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1. Pledge.
Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and
respect for others.

In particular, I acknowledge that:

• I alone am taking this exam. Other than with the course staff, I will not have any verbal, written, or
electronic communication about the exam with anyone else while I am taking the exam or while others
are taking the exam.

• I will not refer to any books, notes, or online sources of information while taking the exam, other than
what the instructor has allowed.

• I will not take screenshots, photos, or otherwise make copies of exam questions to share with others.

SIGN Your Name:

2. Warmup
(1 point) What is the conjunction of all student answers for this question?

Answer: False. As long as one student answers False, then the conjunction will become False.

3. Propositional Logic

1. Consider the following statements, and determine whether they are always true, regardless of the
values of the propositions P and Q.
If the statement is always true, answer “Yes”, and if the statement is not always true, answer “No”.
(a) ¬True

Answer: No, this statement is always false. The negation of true is false.
(b) P∨ [(P =⇒ Q)∧ (P =⇒ ¬Q)]

Answer: Yes, this statement is always true. If P is true, the statement holds, other P is false and
False implies both true and false.

(c) ¬(P =⇒ Q)≡ (P∧¬Q)
Answer: Yes. This is De Morgan’s law applied to ¬P∨Q which is equivalent to P =⇒ Q.

2. Consider the following implication, for a non-empty universe S:[
(∀y ∈ S)(∃x ∈ S)

(
Q(x)∧P(y)

)]
=⇒

[(
(∃x ∈ S)Q(x)

)
∧
(
(∀y ∈ S)P(y)

)]
(a) Is the implication always true, regardless of the choice of predicates P(·) and Q(·)?

Answer: Yes.
(b) Justify your answer, through either a counterexample or a brief explanation.

Answer: Intuitively, this is because Q(x) is only dependent on x, while P(y) is only dependent
on y. This means that we can safely move the ∀y to only apply to P(y), and we can safely move
the ∃x to only apply to Q(x).
Formally, we have

(∀y ∈ S)(∃x ∈ S)
(
Q(x)∧P(y)

)
=⇒ (∀y ∈ S)

(
(∃x ∈ S)Q(x)∧ (∃x ∈ S)P(y)

)
≡ (∀y ∈ S)

(
(∃x ∈ S)Q(x)∧P(y)

)
≡ (∀y ∈ S)(∃x ∈ S)Q(x)∧ (∀y ∈ S)P(y)

≡ (∃x ∈ S)Q(x)∧ (∀y ∈ S)P(y)
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(Note here that although we cannot always distribute ∃ over ∧, the implication still holds.)

4. Proofs

1. (10 points) Let n > 4 be a composite number. Prove that

n | (n−1)!

Hint: Consider the cases when n is and is not a perfect square.
Answer: Since n is composite, there exists a,b such that n = ab and 1 ≤ a,b ≤ n−1.

• If a ̸= b, then a,b are two distinct numbers in the sequence 1,2, ...,n− 1. Hence n = ab divides
(n−1)!

• If a = b, then since n = a2 > 4, we have a > 2 and consequently 2a < a2 = n. This means that
a,2a are two distinct numbers in the sequence 1,2, ...,n−1, which implies that 2a2 = 2n divides
(n−1)!.

Note that for the case when n is not a perfect square, it is not correct to state that all the factors of n
are contained in the factorial. Consider the example where n = 18 = 32 ·2. The number 3 only appears
once in the factorial, we would have to use logic similar to the perfect square case to justify why the
other 3 exists as a factor of another number in the factorial.

2. (6 points) Prove that for r ∈ R, if r2 is irrational, then r is irrational.
Answer: The contrapositive is the statement: “if r is rational, then r2 is rational.” Since r is rational,
we can write r = a/b for a,b ∈ Z and b ̸= 0. This means that r2 = a2/b2. Since a2 and b2 are still
integers with b ̸= 0, we can conclude that r2 is rational.

5. Induction.

(12 points) Prove that 7 |
(
3(2n+1)+2(n−1)

)
for n ≥ 1 by induction. That is, you should have a clear base

case, induction hypothesis, and induction step.

Answer: Base Case: n = 1. 33 +1 = 28 = 4×7.

Induction Hypothesis: Suppose that for a fixed but arbitrary n, we have 32n+1 +2n−1 = 7k for some integer
k.

Induction Step: We’d like to show that 32(n+1)+1 +2(n+1)−1 = 7ℓ for some integer ℓ.

32(n+1)+1 +2(n+1)−1 = 3(2n+1)+2 +2(n−1)+1

= 9×32n+1 +2×2n−1

= 7×32n+1 +2(32n+1 +2n−1)

= 7×32n+1 +2(7k) (by IH)

= 7(32n+1 +2k)

Since (3(2n+1)+2k) is an integer, we have completed the proof.

6. Stable Matchings.

1. Consider the following preference lists for jobs, A,B,C and candidates 1,2,3.
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Jobs Preferences
A 1 > 2 > 3
B 2 > 3 > 1
C 2 > 3 > 1

Candidates Preferences
1 B >C > A
2 C > A > B
3 C > A > B

(a) (3 points) Describe the job optimal pairing for this instance.

A: B: C:

Answer: (A,1)(B,3),(C,2). C has to be with 2, since they are each other’s favorite. The job-
optimal matching pairs A and B with their favorites out of the candidates that are left.

(b) (3 points) Describe the candidate optimal pairing for this instance.

A: B: C:

Answer: (A,3)(B,1),(C,2). C has to be with 2, since they are each other’s favorite. The
candidate-optimal matching pairs 1 and 2 with their favorites out of the jobs that are left.

(c) (3 points) Describe another stable pairing for this instance that is neither job optimal nor candidate
optimal, or indicate that there is none.

OR A: B: C:

Answer: None. Since C has to be with 2, there are only two possible pairings left, the ones we
reported above.

For the following parts, determine whether the statement is true or false.

2. If a job is paired with its least preferred candidate in the job optimal matching, then it is the least
preferred job for every candidate.
Answer: False. It is simply less favored than whoever every other candidate is paired with. For
example, consider the following set of preference lists:

Jobs Preferences
A 1 > 3 > 2
B 2 > 3 > 1
C 1 > 2 > 3

Candidates Preferences
1 A >C > B
2 B >C > A
3 A > B >C

Here, since (A,1) and (B,2) are at the top of each other’s preference lists, they must be paired together
in any stable matching. This means that (C,3) necessarily needs to be paired together, and thus C is
paired with its least preferred candidate in the job optimal matching (the only matching), but C is not
the least preferred job for every candidate.

3. If a job is paired with the same candidate in every stable matching, then that candidate is at the top of
the job’s preference list.
Answer: False. In the example from the previous part, we see that there is only one stable pairing, and
job C is always paired with candidate 3, which is not at the top of its preference list.

4. Recall that in a given day of the propose and reject algorithm with jobs proposing, candidates keep
their best job offer on a string, and reject the rest. If a given candidate instead rejects all of their job
offers on a given day (keeping none on a string), then the resulting matching (if there is one) will
always be worse for this candidate.
Answer: False. Consider the following preference lists.

Jobs Preferences
A 1 > 2
B 2 > 1

Candidates Preferences
1 B > A
2 A > B

4



SID:

If the candidates reject the proposals on the first day, then the resulting proposals form a candidate
optimal matching.

5. If a job and candidate are paired in both the job optimal and candidate optimal matchings, then they
are paired in every stable matching.
Answer: True. The least preferred job that the candidate C can be paired with is the job in the job
optimal pairing (since the job optimal pairing is the candidate pessimal pairing), and thus if it is paired
to that job in the candidate optimal stable pairing as well, then this job is C’s most preferred and least
preferred partner in any possible stable pairing - thus C can only be paired with this job in any possible
stable pairing.

7. Graphs

All graphs are simple and undirected unless otherwise specified.

1. Consider a graph G with m edges and n vertices.

(a) If m ≥ n−1, then G must be connected.
Answer: False. One can have a four vertex graph, consisting of a triangle and an isolated vertex.

(b) If m ≤ n−1, then G must be acyclic.
Answer: False. Same example as above.

(c) If G is Kn, what is m in terms of n?
Answer:

(n
2

)
. This is the number of edges in a complete graph.

(d) If G is a hypercube, what is m in terms of n? (You may find log2 n to be useful in your expression.)
Answer: n logn

2 . A degree-d hypercube has 2d vertices, so equating n = 2d implies that d =
log2 d. Every vertex in a degree-d hypercube has degree d, so by the Handshaking lemma, m =

∑
n
i=1 deg(vi)/2 = n log2 n/2.

(e) If an Eulerian tour exists in G, then m must be even.
Answer: False. A triangle has an Eulerian tour but m = 3.

(f) What is the minimum number of connected components in G? (Possibly in terms of m and/or n.)
Answer: max(1,n−m). Suppose we start with a completely disconnected graph, with n isolated
vertices. We want to add m edges to this graph, while minimizing the number of connected
components. This means that every single edge we add should connect to an isolated vertex, thus
decreasing the number of connected components by 1 for every edge we add.
This can either proceed until we run out of edges to add, or we halt somewhere in the middle
of the process. In the former case, we have n−m connected components, and in the latter case,
we’d have a single connected component. This means that at minimum, we’ll have max(1,n−m)
connected components in the graph.

(g) If G is acyclic and connected, then it must have at least vertices of degree 1. (Give a tight
bound, possibly in terms of m and/or n.)
Answer: 2. Any acyclic graph must have at most n−1 edges, and thus its total degree is at most
2n−2. Since every vertex has degree at least 1, there must be at least two vertices of degree 1.

(h) If G is acyclic and has c connected components, then what is m, possibly in terms of n and/or c?
Answer: n− c. Suppose component i has ni vertices. Since G is acyclic, this component must
be a tree and thus have ni − 1 edges. So, summing over every connected component, we have
∑

c
i=1(ni −1) = (∑c

i=1 ni)− c = n− c.

2. The number of odd degree vertices in a graph is always even.
Answer: True. The sum of the degrees is even, thus the number of vertices with odd degree is even.
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3. A d-dimensional hypercube can be edge colored with colors. (Give a tight bound, possibly
in terms of d.)
Answer: d. We can color the edges in each dimension, i.e. of the form (∗∗∗∗1∗∗∗∗,∗∗∗∗0∗∗∗∗),
a separate color since they do not share endpoints.

4. An odd-length cycle can be edge colored with colors. (Give a tight bound.)
Answer: 3. For the edge from v1 to v2, color it red. For next edge, from v2 to v3, color it blue. Continue
alternating between red and blue edges until we reach the last vertex vk where k is odd. We want to
connect vk to v1. v1 already has a red edge going to v2, and vk has a blue edge going to vk−1. Thus, we
need a third color for this last edge.

5. For a graph with n+ 1 edges, there exists a vertex of degree at least . (Give a tight bound,
possibly in terms of n. Your answer should be as large as possible and hold for every graph that meets
the condition.)
Answer: 3. The average degree is 2(n+ 1)/n = 2+ 2/n, and at least one vertex must be at least
average.

8. Graph proofs.
All graphs are simple and undirected unless otherwise specified.

1. (8 points) Consider a simple connected planar graph with e edges and v > 2 vertices. Prove that if
e < 3v−6, then there is a face of size at least 4 (that is, there exists a face bounded by at least 4 edges).
(Recall that in a simple planar graph, every face has size at least 3.)
Answer: Suppose for contradiction that every face has size exactly 3 (the same argument can be used
in a proof by contraposition). This means that ∑

f
i=1 si = 3 f = 2e by counting face-edge adjacencies.

Using Euler’s formula, we then have v + 2
3 e = e + 2 or that e = 3v − 6. However, we know that

e < 3v−6, which is a contradiction; this means that there must be a face of size strictly larger than 3,
i.e. there is a face of size at least 4.
Alternatively, one can use a direct proof. By Euler’s formula, v+ f = e+2, so v = e− f +2. Plugging
into the inequality, we have that e < 3v−6 = 3(e− f +2)−6, which rearranges to form 3 f < 2e. We
also know by face-edge adjacencies that ∑

f
i=1 si = 2e > 3 f , so at least one of the si’s must be strictly

larger than 3, i.e. there must be some face of size at least 4.

2. (8 points) Consider a bipartite graph G = (V,E) with an Eulerian Tour. Give a method to partition the
edges of the graph into two graphs where every vertex has exactly half the degree, and justify your
answer.
That is, form G1 = (V,E1) and G2 = (V,E2), where E1 ∪E2 = E, E1 ∩E2 = /0, and every vertex v has
d1(v) = d2(v) = d(v)/2 where d(v) is the degree of a vertex in G, and di(v) is the degree of v in Gi.
Answer: Traverse the tour, and place the odd numbered edges in E1 and the even ones in E2.
Since the graph is bipartite, the tour will enter one side in odd steps, and the other in even steps, so E1
is the entering edges for one side (and leaving for the other), and E2 is the leaving for one side (and
entering for the other side.) The number of entering and leaving edges for each vertex is the same, thus
each vertex has half the degree in G1 and G2.
Note that the bipartite condition must be used since the algorithm fails on a triangle, which is Eulerian.

9. Modular Proofs.

1. Consider the statement: For integers a,x,y, if gcd(x,y) = 1 and a | xy, then a | x or a | y.
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(a) Indicate whether the statement is true or false.
Answer: False.

(b) Justify your answer by providing a proof or a counterexample.
Answer: Consider x = 9 and y = 4 and a = 6. Here, 6 | 36 but 6 ∤ 9 and 6 ∤ 4.

2. Consider N = pqr for distinct primes p,q and r.

(a) What is the number of solutions to qx ≡ 0 (mod N)?
Answer: q = N/pr.
We can write the equation as qx ≡ 0 (mod N) =⇒ qx = pqr ·k for some k ∈ Z. Simplifying, this
means that x = pr · k for k ∈ Z.
As such, the set {0(pr),1(pr),2(pr), . . .(q− 1)(pr)} are the only solutions in {0,1, . . . ,N − 1},
i.e. we can set k ∈ {0,1, . . . ,q−1}.

(b) What is x(p−1)(q−1)(r−1) (mod N), if gcd(x,N) = 1?
Answer: 1. See next answer.

(c) (6 points) Use the Chinese Remainder Theorem and Fermat’s Little Theorem to prove that your
answer to the previous part is correct.
Answer: x(p−1) = 1 (mod p),x(q−1) = 1 (mod q),x(r−1) = 1 (mod r) by Fermat’s. This, implies
that x(p−1)(q−1)(r−1) = 1(q−1)(r−1) = 1 (mod p), and x(p−1)(q−1)(r−1) = 1(p−1)(r−1) = 1 (mod q),
and x(p−1)(q−1)(r−1)= 1(q−1)(q−1)= 1 (mod r). All these equations are satisfied by y= 1 (mod pqr),
and it is unique by the CRT.

10. Modular: proof
Let a and n be positive integers. If m is the smallest positive integer such that am ≡ 1 (mod n), we say that
a has order m under arithmetic modulo n. In notation, we write that ordn(a) = m.

1. What is the order of 3 under arithmetic modulo 5?
Answer: Under modulo 5, 31 ≡ 3,32 ≡ 4,33 ≡ 2,34 ≡ 1. Thus the order of 3 under modulo 5 is 4.

2. (6 points) Let gcd(a,n) = 1 and m be an integer. Prove that am ≡ 1 (mod n) if and only if ordn(a) | m.
Answer: ⇐:
Assume that ordn(a) | m. This means that m = k ·ordn(a) for some k. Therefore

am ≡ ak·ordn(a) ≡ (aordn(a))k ≡ 1k ≡ 1 (mod n)

⇒:
Assume that am ≡ 1 (mod n). Let m = q ·ordn(a)+ r, where 0 ≤ r < ordn(a). Then

1 ≡ am (mod n)

≡ aq·ordn(a)+r (mod n)

≡
(

aordn(a)
)q

·ar (mod n)

≡ ar (mod n)

Since ordn(a) is the smallest positive integer that satisfies ax ≡ 1 (mod n), it follows that r = 0. This
means that m = q ·ordn(a), or ordn(a) | m.

3. (4 points) Prove that if p is a prime and a is an integer such that p ∤ a, then ordp(a) | p−1.
Answer: Since p ∤ a, we have that gcd(a, p) = 1. This means that by Fermat’s little theorem, we have

ap−1 ≡ 1 (mod p).

It follows that ordp(a) | (p−1) from the previous part.
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4. (8 points) Prove that there are no integers n > 1 where n | (2n −1).
Answer: Suppose for the sake of contradiction, there exists n > 1 such that n | 2n − 1. Let p be its
smallest prime factor. Note that p ̸= 2.

• Since p | n and n | 2n −1, we have 2n ≡ 1 (mod p). From part 2, we have ordp(2) | n.
• From part 3, ordp(2) | p−1, which implies that ordp(2)≤ p−1 < p.

Since n is a multiple of ordp(2) and ordp(2) < p, n has a prime factor that is strictly less than p.
Contradiction. Hence, such n does not exist.

11. Modular arithmetic.
In the following parts, when working under arithmetic modulo N, give your answers in the range {0,1, . . . ,N−
1}.

1. What is 726 (mod 10)?
Answer: 9 (mod 10). For p= 2, q= 5, we have pq= 10 and (p−1)(q−1)= 4, and thus 6(p−1)(q−
1)+ 2 = 26, and thus, using the the fact that 7(p−1)(q−1) ≡ 1 (mod pq), we have 726 = 72

(
74
)6 ≡

72 ·1 ≡ 49 ≡ 9 (mod 10)

2. What is the multiplicative inverse of 7 (mod 68)?
Answer: 39 (mod 68).

7(0)+68(1) = 68

7(1)+68(0) = 7

7(−9)+68(1) = 5

7(10)+68(−1) = 3

7(−29)+68(3) = 1

Check −7×29+68×3 =−203+204 = 1. Also −29 ≡ 39 (mod 68).

3. For integers x ̸= y and m, n with gcd(m,n) = d, x ≡ y (mod n) and x ≡ y (mod m), then |x− y| ≥
.

Answer: mn/d. We can rewrite the equations to say that x− y ≡ 0 (mod n) and x− y ≡ 0 (mod m).
This means that x− y must be a multiple of n and also a multiple of m. As such, x− y must be a
multiple of lcm(n,m) = mn/d, since m and n share a common factor of d. We can then conclude that
any two distinct values of x and y must then differ by at least mn/d.

4. How many solutions to the equation 10x ≡ 5 (mod 505) are there for x ∈ {0,1, . . . ,504}?
Answer: 5. If 10x ≡ 5 (mod 505), then 10x = 5+505k for some integer k, and dividing by 5 yields
2x = 1+101k, or 2x ≡ 1 (mod 101). Therefore, x = 2−1 ·1 (mod 101), so there is a unique solution
mod 101; call this solution x∗. For any integer i, x = x∗+ 101i is also a solution, since 10x = 10x∗+
2 · 505i ≡ 10x∗ ≡ 5 (mod 505). For i ∈ {0,1,2,3,4} these are all distinct solutions mod 505, but
x+101 ·5 ≡ x+101 ·0 (mod 505), so there are 5 unique solutions mod 505.

5. Consider an RSA scheme with public key (N,e) and private key d. Recall that the encoding of a
message x is E(x) = xe (mod N) and that the decoding is D(y) = yd (mod N).

(a) D(E(x))≡ E(D(x)) (mod N), for all x.
Answer: True. Any encryption/decryption scheme (or a function and inverse) over the same range
and domain yields an identity function, in either order.
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(b) Give an expression that “decodes” a doubly encoded y ≡ E(E(x)) (mod N). Express your answer
in terms of y, possibly using E(·) and D(·).
Answer: D(D(y). D(D(y)) = ((((xe)e))d)d = xe2d2

= (xed)ed = xed = x (mod N), the second and
third inequality being due to D(E(x)) = xed = x (mod N).

(c) For a ≡ xe (mod N) and b ≡ ye (mod N), what is the value of D(ab) (mod N)? Your answer
may be in terms of x and/or y.
Answer: xy (mod N). ab = (xy)e (mod N), thus D(ab) = (xy)ed = xy (mod N).

12. Polynomials.

We say a polynomial is of degree d if it can be written in the form adxd +ad−1xd−1 + · · ·a0. We say that a
polynomial is of degree exactly d if ad ̸= 0.

1. Give a polynomial of degree 2 under GF(5) that contains the points (0,1), (1,0), and (3,0).
Answer: 2(x−1)(x−3) (mod 5). This is Lagrange interpolation.

2. (3 points) Consider a polynomial of degree 2 under GF(5) that contains the points (0,0), (1,1), and
(2,4). In standard form, this polynomial can be written as ax2 + bx+ c. What are the coefficents of
this polynomial?

a = b = c =

Answer: x2 (mod 5). One can see that a0 = 0 from the first point, and then one has two equations
a2 + a1 = 1 (mod 5) and 4a2 + 2a1 = 4 (mod 5). Subtracting the first from the second twice yields
2a2 = 2 or a2 = 1. And plugging in yields a1 = 0. Lagrange interpolation can be done, but its slow.
One can guess as well, I suppose.

3. Given the points (x1,y1),(x2,y2),(x3,y3),(x4,y4), how many polynomials of degree at most 4 pass
through these four points, when working in GF(p), where p ≥ 5 is prime? (Your answer may possibly
be in terms of p.)
Answer: p. A degree 4 polynomial is determined by 5 points, 4 of which are already specified. Thus,
there is only one remaining point, which can be any value in mod p.

4. Given a polynomial P(x) of degree exactly d and another polynomial D(x) of degree exactly d′ < d, we
can perform polynomial division to construct polynomials Q(x) and R(x) such that P(x) = Q(x)D(x)+
R(x), where the degree of R(x) is as small as possible.

(a) What is the exact degree of Q(x), possibly in terms of d and d′?
Answer: d − d′. The leading coefficient of xd has to be nonzero and therefore Q(x) must have
degree at least d −d′. It is sufficient due to polynomial factoring.

(b) Give a tight upper bound on the degree of R(x), possibly in terms of d and d′.
Answer: d′ − 1. One is dividing P(x) by Q(x), and one can always eliminate the coefficient
corresponding to the highest degree term of Q(x) in the factoring algorithm.

13. Errors, erasures, and secrets.

1. Assume that 5 TA’s have a point on a polynomial P(x), and 3 professors have a point on a polynomial
Q(x), and there is a secret s, hidden at P(0) = Q(0) = s. A majority of either group should be able to
reconstruct the secret. Also assume that we are working in arithmetic modulo p, where p is prime.

(a) What should the degree of the polynomial for P(x) be?
Answer: 2. Any 3 points are sufficient to reconstruct the polynomial.
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(b) What should the degree of the polynomial for Q(x) be?
Answer: 1. Any 2 points are sufficient to reconstruct the polynomial.

(c) How large should the modulus p be? (Your answer may be in terms of s.)
Answer: p ≥ max(s+1,6). One has to have at least 6 points, 0 for the secret and the five point
values handed to the TA’s.

2. Consider a polynomial P(x) = 2x2 +3x+3 (mod 5), where we send P(0),P(1),P(2),P(3) and P(4)
along a communication channel, and there was a corruption at P(1).

(a) Recall that the error polynomial has the form: E(x) = x+b0 (mod 5). What is b0 (mod 5)?
Answer: 4 (mod 5). The error polynomial is (x−1) = x+4 (mod 5)

(b) Recall that Q(x) = P(x)E(x) = qdxd + · · ·+q1x+q0.

i. What is d, the degree of Q(x)?
Answer: 3. The degree of P(x) plus the degree of E(x).

ii. What is qd?
Answer: 2 (mod 5). The product of the leading coefficients of E(x) and P(x).

iii. What is q0, in terms of b0?
Answer: 3b0 = 2 (mod 5). The product of the trailing coefficients of E(x) which is b = 4
(mod 5) and P(x) which is 3 (mod 5).

14. Polynomials, and Roots, and Counting

All polynomials below are over GF(p). We say a polynomial is of degree d if it can be written in the form
adxd +ad−1xd−1 + · · ·a0. We say that a polynomial is of degree exactly d if ad ̸= 0.

In the following parts, you may leave your answers unsimplified (i.e. you can leave binomial coefficients,
factorials, exponents, etc. as is), but you may not use any summation or product notation (i.e. you may not
use ∑ or ∏).

1. How many polynomials of degree exactly d over arithmetic modulo a prime p are there?
Answer: (p−1)pd . There are p−1 possible values for the leading coefficient and p possible values
for the d others coefficients. Use the first rule of counting.

2. Any polynomial of degree exactly 1 has exactly 1 root.
Answer: True. Any degree 1 polynomial has mx+b, where m ̸= 0, thus there is a root at −m−1b.

3. Give a quadratic polynomial with a root at x = 1 and nowhere else.
Answer: (x− 1)2 (mod p). Plugging in x = 1 yields zero, otherwise it is the square of a non-zero
number which is zero.

4. How many polynomials are there of the form: a(x− r)2, where a is nonzero?
Answer: (p−1)p. (p−1) possibilities for a, and p possibilities for r.

5. How many polynomials are there of the form: a(x− r1)(x− r2) with r1 ̸= r2, where a is nonzero?
(Note that (x−1)(x−2) is the same polynomial as (x−2)(x−1).)
Answer: (p−1)

(p
2

)
. (p−1) possibilities for a, and

(p
2

)
possible pairs for r1 and r2.

6. How many polynomials of degree exactly 2 have 0 roots?
Answer: (p− 1)(p2 −

(p
2

)
− p). There are (p− 1)p2 polynomials of degree 2, and we subtract the

polynomials with exactly 1 or exactly 2 roots.

10



SID:

7. Given k fixed constants r1, . . . ,rk, how many polynomials are there of the form:

(x− r1)
b1(x− r2)

b2 · · ·(x− rk)
bk

bi ≥ 1 and ∑
k
i=1 bk = d, where d ≥ k is a given constant?

Answer:
(d−1

k−1

)
. Recall bi is the number of terms for each root ri but with the restriction bi ≥ 1, thus

think of each root already having 1 “star” assigned, and the rest are free to be distributed to any bi. The
total number of “stars” that we can distribute is thus d − k. The number of “bars” is the k, the number
of roots. Thus, we have

(d−k+(k−1)
k−1

)
=
(d−1

k−1

)
.

15. Counting.

Throughout this question, you may leave your answers unsimplified (i.e. you can leave binomial coefficients,
factorials, exponents, etc. as is), but you should not use any summation or product notation (i.e. you may
not use ∑ or ∏).

1. A bridge game has 4 players who each get 13 cards, and each set of 13 cards is considered a bridge
hand. Assume that we are working with a standard deck of cards, which has 52 cards in total.

(a) How many 13 card bridge hands are there? (The order of cards in a hand does not matter.)
Answer:

(52
13

)
. Choosing 13 cards from 52.

(b) How many ways can the 52 cards be split among the four players? (That is, players 1 through 4
each get a different hand of 13 cards, and each card is in exactly one player’s hand.)
Answer:

(52
13

)(39
13

)(26
13

)(13
13

)
. Choosing 13 cards from 52. Then 39 cards are left, so choose 13 from

39 for the second player. Similarly, 26 cards are left after 2 players get a bridge hand, so choose
13 from 26 for the third player. The last player gets the final 13 cards, and

(13
13

)
= 1.

2. How many solutions to x1 + · · ·+ xk = n are there, where each xi ≥−1 and is an integer?
Answer:

(n+2k−1
k−1

)
. One can construct a solution using k non-negative integers that add up to n+k and

then subtract 1 from each. Thus, it is the number of ways to find k numbers that add up to n+ k.

3. Consider the following sequence of letters: CANTSTANFURD

(a) How many ways can you rearrange the letters in CANTSTANFURD? (That is, how many ana-
grams are there?)
Answer: 12!

2!2!2! . 12 characters, 2 A’s, 2 N’s, 2 T’s, and one C, S, F, U, R and D.
(b) Let x be the answer to part (a). How many orderings of the letters are there such that C is before

S, and S is before D? Note that C, S, and D are not necessarily adjacent to each other. Express
your answer in terms of x.
Answer: x

3! . There are 3! orderings of C, S and D, and only 1 is allowed.
(c) Let x be the answer to part (a). How many orderings of the letters are there such that both A’s are

before the S? Note that the A’s are not necessarily adjacent to the S or to each other. Express your
answer in terms of x.
Answer: x

3 . There are
(3

1

)
orderings of two A’s and S, and only 1 is allowed.

4. How many binary strings of length n are there with k ones?
Answer:

(n
k

)
. Choose k places out of n to be 1.

5. How many ways are there to split five identical $1 dollar bills among 4 head TA’s?
Answer:

(8
3

)
. 5 stars and 3 bars to split the dollars, before the first bar are Alec’s stars, before the

second are Evelyn’s, and then Gavin’s, and finally Joshua gets the last group.
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