

LECTURE PLAN

	EUCER'S FORMULA
\rightarrow	NON PLANARITY OF K5, K3,3
う	GRAPH COLORING
	> PLANAR GRAPHS
	→ 6 - COLOR THEOREM
	-> 5-COLOR THEOREM

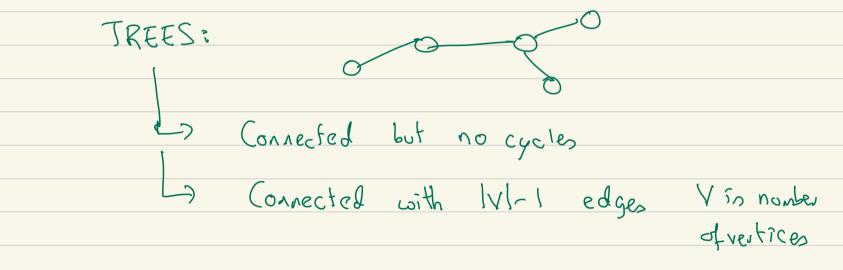
* HYPERCOBES :

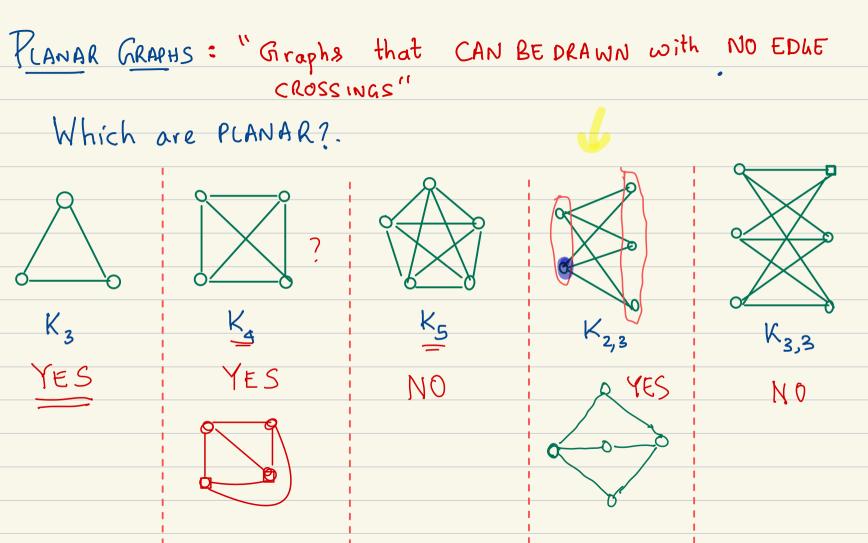
-> RECURSIVE DEFINITION

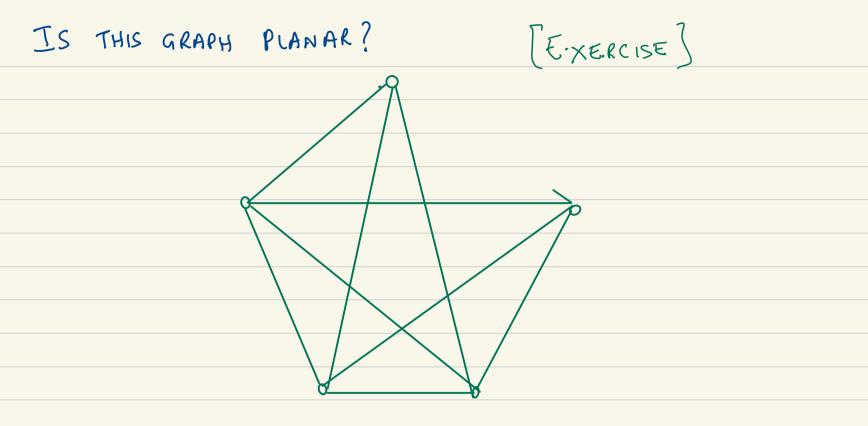
-7 (UIS (LARGE CUTS

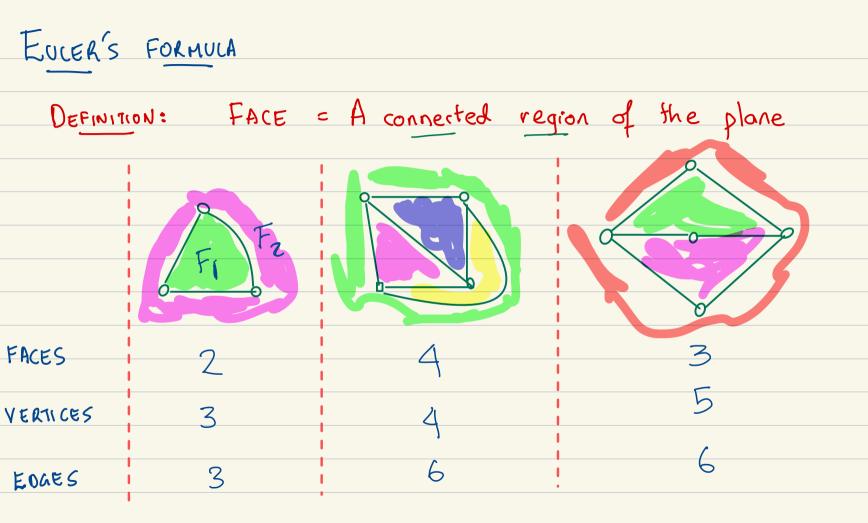
(Vertices Edges) REVIEW:

Degree (vertra) = # of edges at vertra







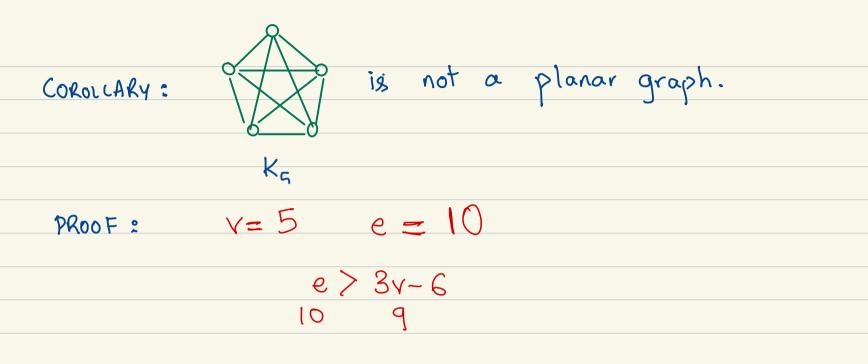


EULER'S FORMULA
In any connected planor graph
$$v + f = e + 2$$

Vertices faces edges

COROLLARY: IN ANY PLANAR GRAPH
$$e \leq 3y-6$$

edges vertices
PROOF:
Count face-Edge adjecencies
1) Every face has $\neq 3$ adjacent edges
2) Every edge has = 2 adjacent faces
 $\Rightarrow 3f \leq 2e \Rightarrow$
 $e+2-y = f \leq 2e/3$
Euler's formula
 $e \leq 3y-6$



COROLLARY: In any planor groph with NO
TRIANGLES
$$e \leq 2v-4$$

PROOF:
1) Every face is adjacent to at least 4 edges
2) Every edge is adjacent to exactly 2 faces.
 $\Rightarrow 4f \leq 2.e$
By Euler's formula $f = e+2-y$
 $e+2-y \leq e_{2} \Rightarrow e \leq 2v-4$ in a planar
with NO X less

COROLLARY:

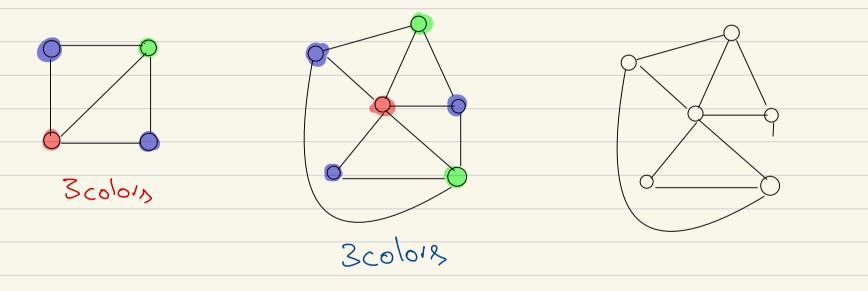
$$K_{3,3}$$

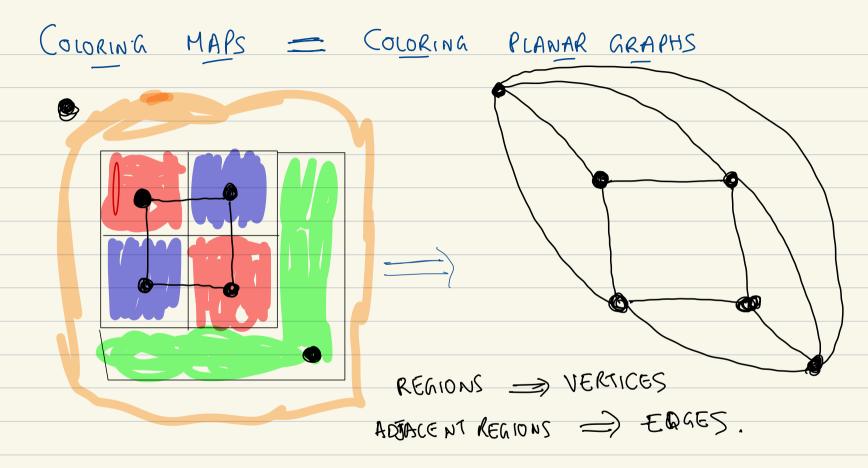
 $K_{3,3}$
 $RooF: \rightarrow K_{5,3}$ has no triangles in the graph.
 $e = 9$ $v=6$
 $e > 2v-4$ $= 7$ violates Corollary
 $g = 2-6-4=8$

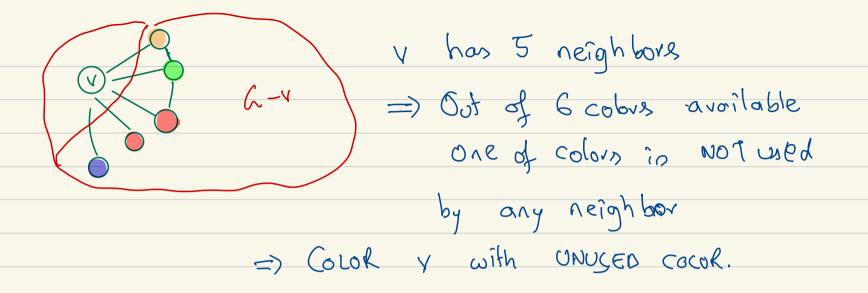
EULERS FORMULA IN ANY CONNECTED PLANAR GRAPH V + f = e+2 PROOF: By induction, on number of edges e. [For every fixed r] BASE CASE: Connected Graph has > V-1 edges. (TREES) INOUCTION STEP: Euler's formula holds for all Graphs with e=K Consider a graph hwith K+1 edges. [e>v-1]

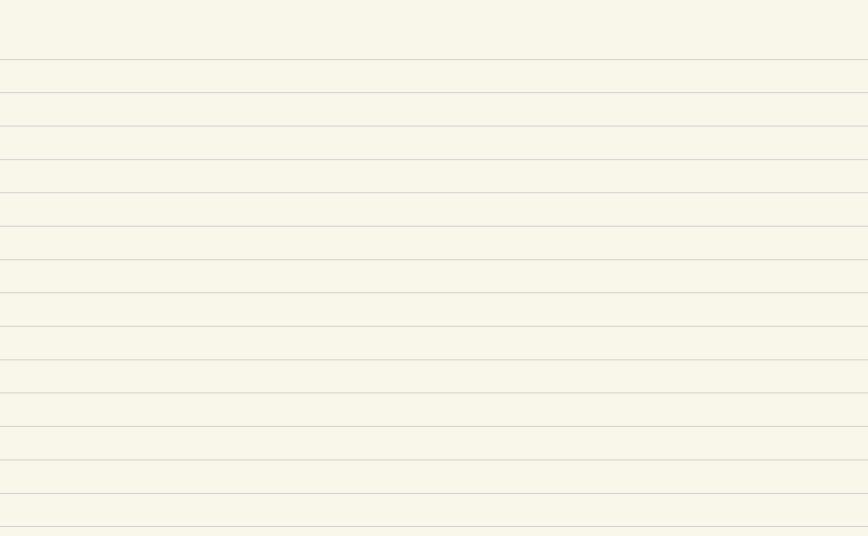
In has a cycle.
Pick an edge ab in a cycle.
G' = G-(edge ab)
C' = Y
f' = f-1
G' satisfies Edelo formula
$$\Rightarrow$$
 V' $+$ f' = (e' + 2
(+1) (+1)
N+f = e+2

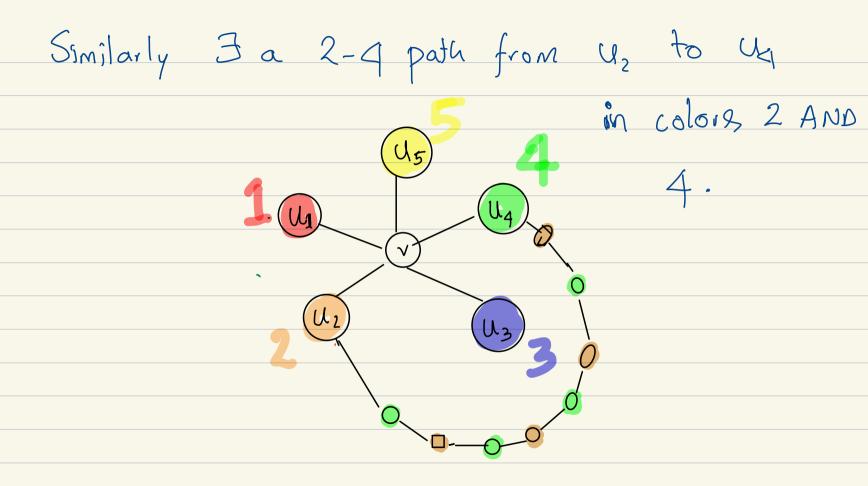
GRAPH COLORING: Assign colors to vertices such that for each edge, endpoints have different colors

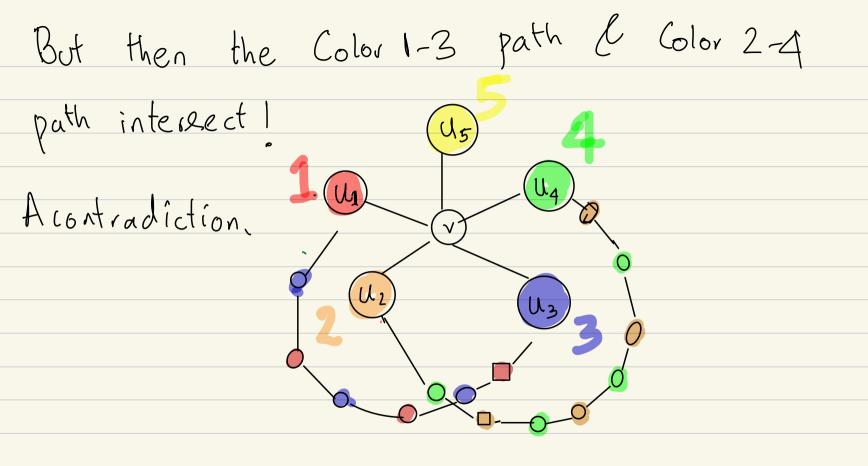


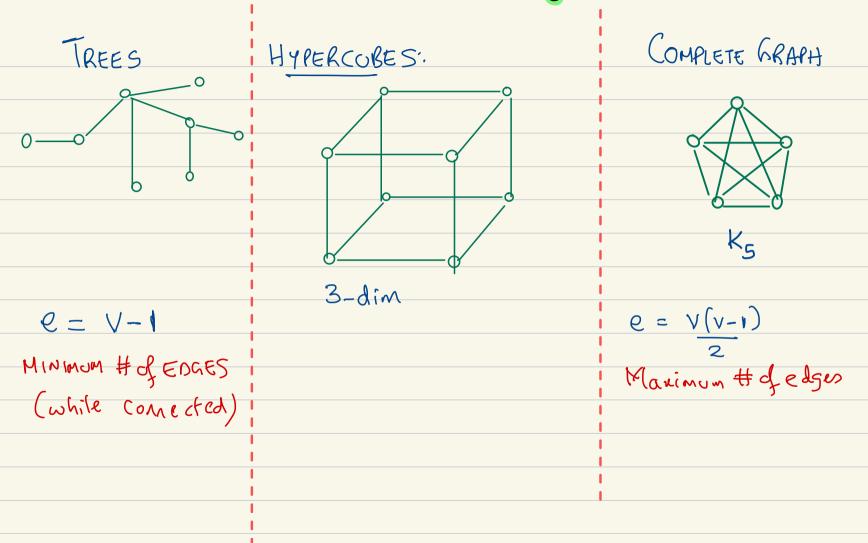


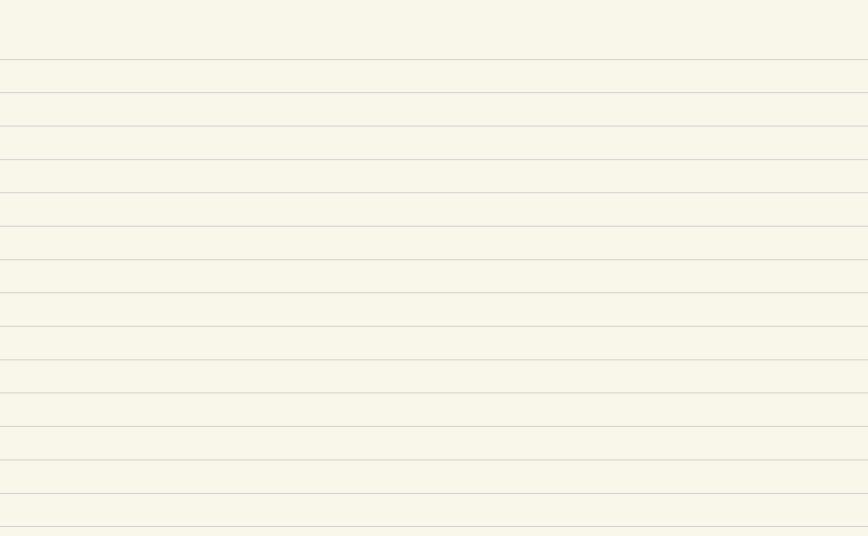


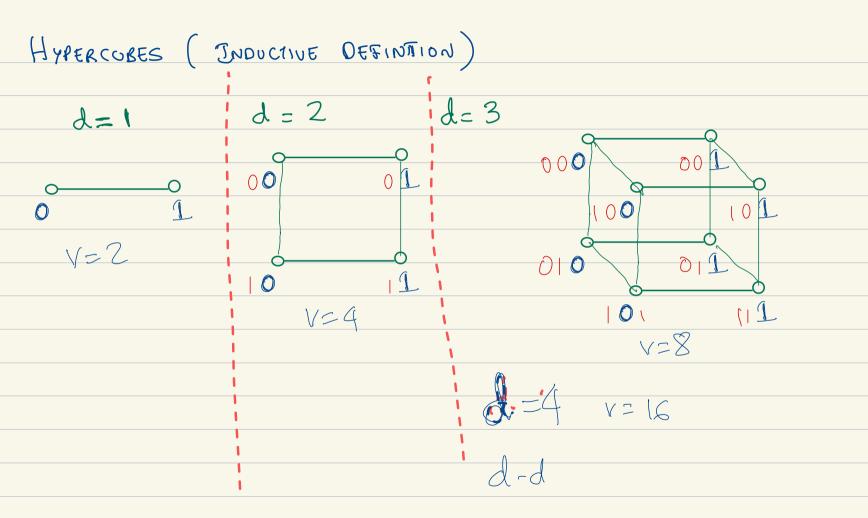












$$d - dim hypercode = 2^{d}$$

 $e = d \cdot 2^{d-1}$

HYPERCUBES:	
DEFINITION:	
d-dimensional hypercobe graph Hg	
VERTICES: ALL BINARY STRINGS ON &- bits 20,13	
EDGES : Gtring x & String y are connected	
by an edge iff	
$\lambda = 3 060$	
oor 2 by differ in EXACILY 1 bit.	
610	
100 x is connected to all y	
100 n is connected to all y 101 2 2 y differ in 1 bit D	

degree (verter) = d in d-dimensional hypercuse. 2e = Total degree = d. 2^d e= d.2d/2 = d.2d-1

Apartition (S,V-S) of CUISS vertices of graph. Size of Cot(S, VIS) = # of edges Crossing from Sto V-S Size (S,V-S) = 5

~ No cuts of small size Craph is very well-connected

