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Our Plan

• Basic Notions.
• Graphs
• Path / walks / cycles. 

• Eulerian Tours
• Existence
• Algorithm

• Different kinds of graphs
• Complete Graph / Trees / Hypercube

• Planar graphs
• Euler’s Formula
• Five coloring theorem



Complete graphs (Cliques)
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Bipartite Graphs
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Tree

Connected Acyclic undirected graph
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Tree is a bipartite graph



Tree has v – 1 edges
Proof.
    Base case: When v = 1, the tree has no edge. 
    Induction Hypothesis: Suppose this is true for all tree with < v – 1 vertices.
    Inductive Step: Take an arbitrary tree with v vertices.
   We remove a leaf from it. Now it has v – 1 vertices.
 We then add back the leaf, one more edge.



An connected graph with v – 1 edges is a tree

Proof (Attempt).
 Base case: When v = 1, the graph with no edge is acyclic.
    Induction Hypothesis: Suppose this is true for all tree with < v – 1 vertices.
    Inductive Step: 
 Take an arbitrary connected graph with v vertices and v – 1 edges.
   We remove a vertex from it. Now it has v – 1 vertices.
 Now how many edges left?  Is the graph still connected???

    

Tree:  Connected Acyclic undirected graph



An connected graph with v – 1 edges is a tree

Observation.
 There must be a vertex with degree-1 in this graph.

Proof.

 Average-degree = !(#$%)
#

< 2.    (handshaking lemma)

    

Tree:  Connected Acyclic undirected graph



An connected graph with v – 1 edges is a tree

Proof.
 Base case: When v = 1, the graph with no edge is acyclic.
    Induction Hypothesis: Suppose this is true for all tree with < v – 1 vertices.
    Inductive Step: 
 Take an arbitrary connected graph with v vertices and v – 1 edges.
   We remove a degree-1 vertex from it. 
 Now it has v – 1 vertices and v – 2 edges. 
            Since the vertex we remove is degree-1, it cannot be on any path/cycle.
 The graph is still connected. By Induction Hypothesis, it is a tree.
 After adding the vertex back, it is still connected & acyclic.
    

Tree:  Connected Acyclic undirected graph



Hypercube
Definition-1.
    Hypercubes are graphs with vertex set 𝑉 = {0,1}' (all binary strings)
 and edge set 𝐸 = 	 {(𝑢, 𝑣)|	𝑢, 𝑣 ∈ {0,1}' , 𝑢, 𝑣	only	differ	in	one	place}.



Hypercube
Definition-2.
    Hypercubes of dimension n is defined by taking two copies of hypecubes
of dimension n – 1 and connect corresponding vertices by edge.



Hypercube

  #edge = 𝑛	2'	$% (handshaking lemma).
    



Hamiltonian Cycle
Theorem.
    Hamiltonian Cycle is a cycle that goes through each vertex in the graph 
exactly once. 



Hamiltonian Cycle
Definition.
    Hamiltonian Cycle is a cycle that goes through each vertex in the graph 
exactly once. 
    Unlike Eulerian walks, there is no efficient algorithm for finding 
Hamiltonian Cycles.



Hamiltonian Cycle
Theorem.

   If a graph has minimum degree ≥ '
!

 , then there is a Hamiltonian Cycle.  



Our Plan

• Basic Notions.
• Graphs
• Path / walks / cycles. 

• Eulerian Tours
• Existence
• Algorithm

• Different kinds of graphs
• Complete Graph / Trees / Hypercube

• Planar graphs
• Euler’s Formula
• Five coloring theorem



Planar Graph
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Planar Graph
Definition
 A planar graph is a graph that can be drawn on a plane 
 without crossing edges.
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Why does planar graphs matter?



Famous non-planar graphs
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Famous non-planar graphs
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Any graph that contains 𝐾! or 𝐾#,# as a subgraph. / 
Any graph with too many edges (e > 3v – 6) 
(will prove this later!)

 



Euler’s Formula
Theorem (Since ancient Greeks)
 A polyhedral satisfies 𝑣 + 𝑓 − 𝑒 = 2.



Euler’s Formula
Theorem (Since ancient Greeks)
 A polyhedral satisfies 𝑣 + 𝑓 − 𝑒 = 2.



Euler’s Formula
Theorem (Since ancient Greeks)
 A polyhedral satisfies 𝑣 + 𝑓 − 𝑒 = 2.

But ancient Greek don’t know how to prove it because they didn’t take 70.

The key is to “strengthen induction hypothesis” 



Polyhedrals are planar graphs



Polyhedrals are planar graphs



Euler’s Formula
Theorem (Strengthened hypothesis)
 A connected planar graph satisfies 𝑣 + 𝑓 − 𝑒 = 2.
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Proof of Euler’s Formula
Proof.
    Base case: When 𝑓 = 1,	the graph is connected & acyclic => tree.
  We have 𝑒 = 𝑣 − 1.   𝑣 + 𝑓 − 𝑒 = 2
    Induction hypothesis: Suppose the formula is tree for all graphs with f-1 faces.
 Inductive Step: Take a graph with 𝑓 faces.
    We remove one edge separating two faces.
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Proof of Euler’s Formula
Proof.
    Base case: When 𝑓 = 1,	the graph is connected & acyclic => tree.
  We have 𝑒 = 𝑣 − 1.   𝑣 + 𝑓 − 𝑒 = 2
    Induction hypothesis: Suppose the formula is tree for all graphs with f-1 faces.
 Inductive Step: Take a graph with 𝑓 faces.
    We remove one edge separating two faces. 
	 𝑓 decrease by 1 and 𝑒 decrease by 1.  
 We get a graph with 𝑓 − 1 face.
 ………..
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Proof of 3v-6 rule
Theorem
 A connected planar graph can have at most 3𝑣 − 6	edges.
.Proof.
    - A face is adjacent to ≥ 3 edges.
 - An edge is adjacent to ≤ 2 faces.
    We get 3𝑓 ≤ 2𝑒.
 We know 𝑣 + 𝑓 − 𝑒 = 2.
     𝑓 = 𝑒 + 2 − 𝑣,
 3𝑒 + 6 − 3𝑣 ≤ 2𝑒
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Graph Coloring

Two coloring Three coloring



Four coloring theorem
Theorem. 
The regions on any map can be colored using four colors 
such that no adjacent regions have the same color.



Four coloring theorem



Degree + 1 Coloring
Theorem
 It is always possible to color a graph with (maximum degree) + 1 colors.
.

Proof.
 Simply color each vertex using a color that is different from all its 
neighbors. 
 
  (maximum degree) + 1 colors => never run out of color.



Six Coloring Theorem
Theorem
 Any planar graph can be six-colored.
.

Proof.

 𝑒 ≤ 3𝑣 − 6 means average degree ≤ !⋅(*#$+)
#

< 6.
 So there exists a vertex with degree 5. 

 Remove that vertex, color the rest of the graph first (induction).
 Add back that vertex, we never run out of color!



Hamiltonian Cycle
Theorem.

   If a graph has minimum degree ≥ #
!
 , then there is a Hamiltonian Cycle.  

Proof.
   Base Case: If v = 1, there is a Hamiltonian cycle.
   Induction Hypothesis: Suppose this is true for v – 1.
    Inductive Step: Take any graph with v vertices, remove an arbitrary vertex.



Hamiltonian Cycle
Theorem.

   If a graph has minimum degree ≥ #
!
 , then there is a Hamiltonian Cycle.  

Proof.
 Inductive Step: Take any graph with v vertices, remove an arbitrary vertex.
  By induction hypothesis, the rest of the graph has a Hamiltonian Cycle.

1 2 3 ⋯⋯ V-1 V



⋯⋯

Hamiltonian Cycle
Theorem.

   If a graph has minimum degree ≥ #
!
 , then there is a Hamiltonian Cycle.  

Proof.

 Inductive Step: Removed vertex has degree #
!
. 

  There are only v-1 previous vertices.
  => two neighbors must be adjacent  
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Hamiltonian Cycle
Theorem.

   If a graph has minimum degree ≥ #
!
 , then there is a Hamiltonian Cycle.  

Proof.

 Inductive Step: Removed vertex has degree #
!
. 

  There are only v-1 previous vertices.
  => two neighbors must be adjacent
  Splice!  
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Recent Advance
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