Lecture 5: Cardinality and Countability

Today's Plan

- Functions.
- Bijection / Surjection / Injection
- Composition
- Cardinality
- Countable
- Uncountable
- Diagonalization

Hilbert's Infinite Hotel

- Suppose there is a hotel, with the same number of rooms as natural numbers.
- Rooms are marked with 1, 2, 3, ..., n, All rooms are occupied.
- Now number of new guest = 1 .
- We tell the guest in room n to move in room $n+1$.
- The new guest can then take room 1.

Hilbert's Infinite Hotel

- Suppose there is a hotel, with the same number of rooms as natural numbers.
- Rooms are marked with 1, 2, 3, ..., n, All rooms are occupied.
- Now number of new guest $=k$.
- We tell the guest in room n to move in room $n+k$.
- The new guest can then take room $1,2, \cdots, k$.

Hilbert's Infinite Hotel

- Suppose there is a hotel, with the same number of rooms as natural numbers.
- Rooms are marked with $1,2,3, \ldots, n, \ldots$.... All rooms are occupied.
- Now number of new guest = number of natural numbers.
- We tell the guest in room n to move in room ???.
- There is no Room $n+\infty$. Because it is not a natural number.

Hilbert's Infinite Hotel

- Suppose there is a hotel, with the same number of rooms as natural numbers.
- Rooms are marked with 1, 2, 3, ..., n, All rooms are occupied.
- Now number of new guest = number of natural numbers.
- We tell the guest in room n to move in room $2 n$.
- The new guest can then take room $1,3,5, \cdots$.

To Infinity!

- How do we compare sizes of infinite sets?
- How do we add one to infinite sets?
- How do we "multiply" the size of infinite sets?

Functions

Definition

A function $f: X \rightarrow Y$ has a unique value $f(x) \in Y$ for every $x \in X$.
We say f maps x to $f(x)$.
x is called a preimage.
$f(x)$ is called an image.

Surjection / Injection.

Definition

A function $f: X \rightarrow Y$ is surjective (onto) if and only if

$$
\forall y \in Y|\{x \mid f(x)=y\}| \geq 1
$$

Definition

A function $f: X \rightarrow Y$ is injective (one-to-one) if and only if

$$
\forall y \in Y \quad|\{x \mid f(x)=y\}| \leq 1
$$

Definition

A function $f: X \rightarrow Y$ is bijective if and only if

$$
\forall y \in Y \quad|\{x \mid f(x)=y\}|=1
$$

Equivalently, if and only if f is both surjective and injective.

Both (bijection)

Bijection between Finite sets.

Definition

A function $f: X \rightarrow Y$ is bijective if and only if

$$
\forall y \in Y \quad|\{x \mid f(x)=y\}|=1
$$

Claim
If X and Y are finite and has bijection f, we must have $|X|=|Y|$.
Proof.

$$
|Y|=\sum_{y \in Y} 1=\sum_{y \in Y}|\{x \mid f(x)=y\}|=\sum_{x \in X} 1=|X|
$$

Cardinality.

Definition

If X and Y are infinite sets and has bijection f, we say X and Y have the same cardinality.

Cardinality.

Definition

If there is an injection f from X to Y, then X has smaller or equal cardinality than $Y .|X| \leq|Y|$

Function composition

Definition

The composition of a function $f: X \rightarrow Y$ and $\mathrm{g}: Y \rightarrow Z$ is defined as:

$$
g \circ f(x)=g(f(x))
$$

Function composition

Theorem

The composition of injection / surjection / bijection is still a injection / surjection / bijection.

Proof.

Implication: If $|X| \leq|Y|$ and $|Y| \leq|Z|$, then $|X| \leq|Z|$!
For example for injection,

$$
g \circ f(x)=g(f(x))
$$

If for any z , there is a unique y such that $\mathrm{g}(\mathrm{y})=\mathrm{z}$. For every y there is a unique x such that $f(x)=y$.

Then for any z, there is a unique x such that $g(f(x))=z$.

Cardinality.

Theorem (Schröder-Bernstein Theorem) If there is an injection f from X to Y, and a injection f^{\prime} from Y to X. Then there is a bijection between X and Y.

We will not cover its proof.
Implication: If $|X| \leq|Y|$ and $|Y| \leq|X|$, Then $|X|=|Y|$.

Cardinality.

Definition

If there is a surjection f from X to Y, then X has greater or equal cardinality than Y.

Natural Numbers

- Back to the infinite hotel:
- Having one extra customer:
$\mathbb{N}_{+} \cup\{e\}$ has the same cardinality as \mathbb{N}_{+}.

$$
f: \mathbb{N}_{+} \cup\{e\} \rightarrow \mathbb{N}_{+} \text {defined as } f(x)=\left\{\begin{array}{cc}
x+1 & \text { if } x \in \mathbb{N}_{+} \\
1 & \text { if } x=e
\end{array}\right.
$$

- Why is it a bijection?
- Having k extra customers:
$\mathbb{N}_{+} \cup\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ has the same cardinality as \mathbb{N}_{+}.

$$
f: \mathbb{N}_{+} \cup\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \rightarrow \mathbb{N}_{+} \text {defined as } f(x)= \begin{cases}x+k & \text { if } x \in \mathbb{N}_{+} \\ i & \text { if } x=e_{i}\end{cases}
$$

Natural Numbers

- Back to the infinite hotel:
- Having \mathbb{N}_{+}extra customer:
$\mathbb{N}_{+} \sqcup \mathbb{N}_{+}$has the same cardinality as \mathbb{N}_{+}.

Here $\mathbb{N}_{+} \sqcup \mathbb{N}_{+}$is the "disjoint union" of two copies of \mathbb{N}_{+}.

$$
\mathbb{N}_{+} \sqcup \mathbb{N}_{+}=\{1,2,3,4, \cdots\} \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, \cdots\right\}
$$

Can we still use
$f: \mathbb{N}_{+} \cup\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \rightarrow \mathbb{N}_{+}$defined as $f(x)=\left\{\begin{array}{ll}x+k & \text { if } x \in \mathbb{N}_{+} \\ i & \text { if } x=e_{i}\end{array}\right.$ and take $k=\infty ?$
No! What is the image for 1 ?
Remember $\infty \notin \mathbb{N}$!

Natural Numbers

- Back to the infinite hotel:
- Having \mathbb{N}_{+}extra customer:
$\mathbb{N}_{+} \sqcup \mathbb{N}_{+}$has the same cardinality as \mathbb{N}_{+}.

Here $\mathbb{N}_{+} \sqcup \mathbb{N}_{+}$is the "disjoint union" of two copies of \mathbb{N}_{+}.
$\mathbb{N}_{+} \sqcup \mathbb{N}_{+}=\{1,2,3,4, \cdots\} \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, \cdots\right\}$
$f: \mathbb{N}_{+} \sqcup \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$defined as $f(x)=\left\{\begin{array}{lr}2 x & \text { if } x \in \mathbb{N}_{+} \\ 2 x+1 & \text { if } x \in \mathbb{N}_{+}^{\prime}\end{array}\right.$

Natural Numbers

- Back to the infinite hotel:
- Having \mathbb{N} extra customer:
\mathbb{Z} has the same cardinality as \mathbb{N}_{+}.

The following will not work.

Natural Numbers

- Back to the infinite hotel:
- Having \mathbb{N}_{+}extra customer:
\mathbb{Z} has the same cardinality as \mathbb{N}_{+}.
$f: \mathbb{Z} \rightarrow \mathbb{N}_{+}$defined as $f(x)= \begin{cases}2 x & \text { if } x \geq 0 \\ 2(-x)-1 & \text { if } x<0\end{cases}$

Another view: Enumerate

- Back to the infinite hotel:
- Having \mathbb{N} extra customer:

We can enumerate all integers in \mathbb{Z} as follows:
$0,-1,1,-2,2,-3,3, \cdots \cdots$ where all integers are reached in finite steps.
$x \in \mathbb{Z}$ is reached in $\leq 2|x|+1$ steps.

Another view: Enumerate

- Back to the infinite hotel:
- Having \mathbb{N} extra customer:

We can NOT enumerate all integers in \mathbb{Z} as follows:
$0,1,2,3, \cdots \cdots,-1,-2, \cdots \cdots$ because $-1,-2, \ldots$ are NOT reached in finite steps.

Countability = Enumerability

Definition

A set S is said to be countable if $|S| \leq|\mathbb{N}|$.

- If we can enumerate a set S,
we can map $s \in S$ to the number of steps (which is finite) it takes to reach s.
This is injective. Thus $|S| \leq|\mathbb{N}|$.
- If S is countable, there must be surjection $f: \mathbb{N} \rightarrow S$.
we enumerate $f(i)$ in the i-th step.
Because this is surjection, for every $s \in \mathrm{~S}$, there exists $n \in \mathbb{N}$ such that $f(n)=s$. Note $\infty \notin \mathbb{N}, s$ is reachable in n, which is finite, steps.

Subsets

Theorem
A subsets of a countable set is still countable.

Proof (using injection)
Let S^{\prime} be a subset of S.
$f(x)=x$ is an injection mapping $S^{\prime} \rightarrow S$.

Proof (using enumeration)
Suppose we have an enumeration for S.
If we only output what is in S^{\prime}....

Strings

Can we enumerate all strings?
A string is a finite length sequence of letters (either $0 / 1$ or $\mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d} /$... depending on your finite alphabet)

YES!

What won't work: lexicographical order

What would work: We first enumerate all strings of length 1. (a/b/c/d/...)
Then all strings of length 2. (aa/ab/ac/...)
\qquad

Rational Numbers

- How about $Q=\frac{p}{q}$? This will NOT work:

$$
\begin{aligned}
& \frac{1}{1} \longrightarrow \frac{2}{1} \longrightarrow \frac{3}{1} \longrightarrow \frac{4}{1} \\
& \frac{1}{2} \longrightarrow \frac{2}{2} \longrightarrow \frac{3}{2} \longrightarrow \frac{4}{2} \\
& \frac{1}{3} \longrightarrow \frac{2}{3} \longrightarrow \frac{3}{3} \longrightarrow \frac{4}{3} \\
& \frac{1}{4} \longrightarrow \frac{2}{4} \longrightarrow \frac{3}{4} \longrightarrow \frac{4}{4}
\end{aligned}
$$

Rational Numbers

- How about $Q=\frac{p}{q}$?

Pairs of natural numbers

- $\mathbb{N} \times \mathbb{N}=(p, q)$?

Real numbers

- Real numbers \mathbb{R} can be defined as countably long decimals.
- E.g. 0.0023242321......, 131.42345324....., 3.1415926........
- Caveat: 1 = 0.999999

$$
3.3=3.29999 .
$$

- $[1, \infty)$ vs $(0,1]$?

Bijection $f(x)=\frac{1}{x}$
Same cardinality

Real numbers

- \mathbb{R} vs $(0,1]$?
$\mathbb{R}_{+}=[1, \infty) \cup(0,1]$ has same cardinality as $(0,1]$

$$
f(x)=\left\{\begin{array}{c}
\frac{x}{2} \text { for } x \in(0,1] \\
\frac{1}{2}+\frac{1}{2 x} \text { for } x \in[1, \infty)
\end{array}\right.
$$

\mathbb{R}_{+}has the same cardinality as \mathbb{R}.

Diagonalization

- Real numbers \mathbb{R} can be defined as countably long decimals.
- E.g. 0.0023242321......, 131.42345324....., 3.1415926........
- Caveat: 1 = 0.999999

$$
3.3=3.29999 .
$$

- Is \mathbb{R} countable?

Diagonalization

- Is \mathbb{R} countable?
- NO!
- Proof.

Assume \mathbb{R} is countable, then \mathbb{R} is enumerable.
Take any enumeration,
0.32123435......
0.34255235......
0.12342551......
0.59285225......

Diagonalization

- Is \mathbb{R} countable?
- NO! (Equivalent to proving [0,1) is uncountable.)
- Proof.

Assume $[0,1)$ is countable, then $[0,1)$ is enumerable.

Take any enumeration,
0.32123435......
0.36255235......
0.12642551......
0.59285225......

We construct a real number not in the list:

If the i-th row's i-th digit is 6 , we put 7 in the i-th digit of our number.

Otherwise we put 6.

Diagonalization

- Is \mathbb{R} countable?
- NO! (Equivalent to proving [0,1) is uncountable.)
- Proof.

Assume $[0,1)$ is countable, then $[0,1)$ is enumerable.

Take any enumeration,
0.32123435......
0.36255235......
0.12642551......
0.59285225......

Why is not in the list? Proof by contradiction.

Why 6 and 7 ?
0.6776

Wait a minute...

- We have seen

- The set of all strings are countable.
- This includes every English sentence.
- The set of all real numbers are uncountable.
- => Most of the real numbers cannot be described / named / said!
- A philosophical question: Do they really exist?
- If a tree falls in a forest....

Power set

- In the same way, we can prove:

Let $2^{S}=\{T \mid T \subseteq S\}$ be the powerset of S.

- 2^{S} must be of a larger cardinality than S for any infinite set S.
- Proof: For any mapping $f: S \rightarrow 2^{S}$,

$$
\{x \in S \mid x \notin f(x)\} \in 2^{S}
$$

is not an image of f.

Power set

- In the same way, we can prove:

$$
\text { Let } 2^{S}=\{T \mid T \subseteq S\} \text { be the powerset of } S \text {. }
$$

- 2^{S} must be of a larger cardinality than S.
- Actual Proof: For any mapping $f: S \rightarrow 2^{S}$,

$$
\begin{array}{lcccll}
& s_{1} & s_{2} & s_{3} & \ldots . . & \\
f\left(s_{1}\right) & 1 & 0 & 1 & \ldots \ldots & \text { i-th row and j-th column = } 1 \\
f\left(s_{2}\right) & 0 & 1 & 1 & \ldots \ldots & \text { if } s_{j} \in f\left(s_{i}\right) \\
f\left(s_{3}\right) & 0 & 1 & 0 & \ldots \ldots &
\end{array}
$$

Power set

- In the same way, we can prove:

Let $2^{S}=\{T \mid T \subseteq S\}$ be the powerset of S.

- 2^{S} must be of a larger cardinality than S.
- Actual Proof: For any mapping $f: S \rightarrow 2^{S}$,

$$
\begin{array}{cccccc}
s_{1} & s_{2} & s_{3} & & \\
f\left(s_{1}\right) 1 & 0 & 1 & \ldots \ldots & \text { i-th row and j-th column = } 1 \\
f\left(s_{2}\right) & 0 & 1 & 1 & \cdots \cdots & \text { if } s_{j} \in f\left(s_{i}\right) \\
f\left(s_{3}\right) 0 & 1 & 0 & \cdots \cdots & \\
\{x \in S \mid x \notin f(x)\} & 0 & 0 & 1 & &
\end{array}
$$

How about... disjoint Intervals?

- Suppose S is a set of disjoint intervals.

$$
\text { (e.g. } S=\{(1,2),(e, \pi),(4, \sqrt{29})\})
$$

S is countable!
Each interval contains at least one rational number.
We can construct injection $f: S \rightarrow \mathbb{Q}$.
Mapping intervals to that rational number. So $|S| \leq|\mathbb{Q}|$.

