
Lecture 5: Cardinality and Countability



Today’s Plan

• Functions.
• Bijection / Surjection / Injection
• Composition

• Cardinality
• Countable
• Uncountable
• Diagonalization



Hilbert’s Infinite Hotel

• Suppose there is a hotel, with the same number of rooms as natural 
numbers.
• Rooms are marked with 1, 2, 3, …, n, ….  All rooms are occupied.

• Now number of new guest = 1. 
• We tell the guest in room 𝑛 to move in room 𝑛 + 1.
• The new guest can then take room 1.



Hilbert’s Infinite Hotel

• Suppose there is a hotel, with the same number of rooms as natural 
numbers.
• Rooms are marked with 1, 2, 3, …, n, ….  All rooms are occupied.

• Now number of new guest = k. 
• We tell the guest in room 𝑛 to move in room 𝑛 + 𝑘.
• The new guest can then take room 1, 2, ⋯ , 𝑘.



Hilbert’s Infinite Hotel

• Suppose there is a hotel, with the same number of rooms as natural 
numbers.
• Rooms are marked with 1, 2, 3, …, n, ….  All rooms are occupied.

• Now number of new guest = number of natural numbers. 
• We tell the guest in room 𝑛 to move in room ???.
• There is no Room n + ∞. Because it is not a natural number.



Hilbert’s Infinite Hotel

• Suppose there is a hotel, with the same number of rooms as natural 
numbers.
• Rooms are marked with 1, 2, 3, …, n, ….  All rooms are occupied.

• Now number of new guest = number of natural numbers. 
• We tell the guest in room 𝑛 to move in room 2𝑛.
• The new guest can then take room 1, 3, 5, ⋯.



To Infinity!

• How do we compare sizes of infinite sets?

• How do we add one to infinite sets?

• How do we ``multiply’’ the size of infinite sets?



Functions

Definition
    A function 𝑓: 𝑋 → 𝑌 has a unique value 𝑓 𝑥 ∈ 𝑌 for every 𝑥 ∈ 𝑋.
  We say 𝑓 maps	𝑥 to	𝑓 𝑥 .

    𝑥 is called a preimage.
    𝑓 𝑥  is called an image.
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Surjection / Injection.

Definition
    A function 𝑓: 𝑋 → 𝑌 is surjective (onto) if and only if 
                            ∀	𝑦 ∈ 𝑌	 {𝑥	 𝑓 𝑥 = 𝑦}| ≥ 1	.

Definition
    A function 𝑓: 𝑋 → 𝑌 is injective (one-to-one) if and only if 
                            ∀	𝑦 ∈ 𝑌	 {𝑥	 𝑓 𝑥 = 𝑦}| ≤ 1.

Definition
    A function 𝑓: 𝑋 → 𝑌 is bijective if and only if 
                            ∀	𝑦 ∈ 𝑌	 {𝑥	 𝑓 𝑥 = 𝑦}| = 1.
   Equivalently, if and only if 𝑓 is both surjective and injective.



Bijection between Finite sets.
Definition
    A function 𝑓: 𝑋 → 𝑌 is bijective if and only if 
                            ∀	𝑦 ∈ 𝑌	 {𝑥	 𝑓 𝑥 = 𝑦}| = 1.

Claim
    If 𝑋 and 𝑌 are finite and has bijection 𝑓,	 we must have 𝑋 = 𝑌 .

Proof. 

𝑌 = 	:
#∈%

1 = :
#∈%

{𝑥 𝑓 𝑥 = 𝑦} = :
&∈'

1 = |𝑋|



Cardinality.
Definition
 If 𝑋 and 𝑌 are infinite sets and has bijection 𝑓, we say 𝑋 and 𝑌 have 
the same cardinality.

𝑋 𝑌

⋮
 

⋮
 



Cardinality.
Definition
 If there is an injection 𝑓	from 𝑋 to 𝑌, then 𝑋 has smaller or equal 
cardinality than 𝑌. 𝑋 ≤ |𝑌| 

𝑋 𝑌
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Function composition
Definition
    The composition of a function 𝑓: 𝑋 → 𝑌 and g: 𝑌 → 𝑍 is defined as:

     𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 .
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Function composition
Theorem
    The composition of injection / surjection / bijection is still a 
  injection / surjection / bijection.

Proof.
   For example for injection, 

𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 .

If for any z, there is a unique y such that g(y) = z. 
For every y there is a unique x such that f(x) = y.

Then for any z, there is a unique x such that g(f(x)) = z.

Implication: If 𝑋 ≤ 𝑌  and 𝑌 ≤ 𝑍 , then 𝑋 ≤ 𝑍 ! 



Cardinality.
Theorem (Schröder–Bernstein	Theorem)
 If there is an injection 𝑓	from 𝑋 to 𝑌, and a injection 𝑓′	from 𝑌 to 𝑋. 
Then there is a bijection between 𝑋 and Y.

We will not cover its proof.

Implication: If 𝑋 ≤ |𝑌| and 𝑌 ≤ 𝑋 , Then 𝑋 = 𝑌 . 



Cardinality.
Definition
 If there is a surjection 𝑓	from 𝑋 to 𝑌, then 𝑋 has greater or equal 
cardinality than 𝑌.

𝑋 𝑌
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⋮
 



Natural Numbers

• Back to the infinite hotel:
• Having one extra customer:  
       ℕ( ∪ {𝑒}	has the same cardinality as ℕ(.

 𝑓 ∶ ℕ! ∪ {𝑒} → ℕ!  defined as 𝑓(𝑥) = 	 .𝑥 + 1	if	𝑥 ∈ ℕ!
1	 if	𝑥 = 𝑒

• Why is it a bijection?

• Having k extra customers:  
       ℕ( ∪ {𝑒), 𝑒*, … , 𝑒+}	has the same cardinality as ℕ(.

 𝑓 ∶ ℕ! ∪ {𝑒", 𝑒#, … , 𝑒$} → ℕ!  defined as 𝑓(𝑥) = 	 .𝑥 + 𝑘	 if	𝑥 ∈ ℕ!𝑖	 if	𝑥 = 𝑒%



Natural Numbers

• Back to the infinite hotel:
• Having ℕ( extra customer:  
       ℕ( ⊔ ℕ(	has the same cardinality as ℕ(.
 
 Here ℕ( ⊔ ℕ(	 is the ``disjoint union’’ of two copies of ℕ(.
  ℕ( ⊔ ℕ( =	 {1, 2, 3, 4,⋯ } ∪ {1,, 2,, 3,, 4,, ⋯ }

	 Can we still use 

  𝑓 ∶ ℕ! ∪ {𝑒", 𝑒#, … , 𝑒$} → ℕ!  defined as 𝑓(𝑥) = 	 .𝑥 + 𝑘	 if	𝑥 ∈ ℕ!𝑖	 if	𝑥 = 𝑒%
  and take 𝑘 = ∞?

No! What is the image for 1?
 Remember ∞ ∉ ℕ!



Natural Numbers

• Back to the infinite hotel:
• Having ℕ( extra customer:  
       ℕ( ⊔ ℕ(	has the same cardinality as ℕ(.
 
 Here ℕ( ⊔ ℕ(	 is the ``disjoint union’’ of two copies of ℕ(.
  ℕ( ⊔ ℕ( =	 {1, 2, 3, 4,⋯ } ∪ {1,, 2,, 3,, 4,, ⋯ }

  𝑓 ∶ ℕ! ⊔ ℕ! → ℕ!  defined as 𝑓(𝑥) = 	 .
2𝑥	 if	𝑥 ∈ ℕ!
	2𝑥 + 1	 if	𝑥 ∈ ℕ!&



Natural Numbers

• Back to the infinite hotel:
• Having ℕ extra customer:  
       ℤ has the same cardinality as ℕ!.

 The following will not work.

0 1 2 3 ⋯-1-2-3⋯

0 1 2 3 4 ⋯5 6



Natural Numbers

• Back to the infinite hotel:
• Having ℕ( extra customer:  
       ℤ has the same cardinality as ℕ!.

  𝑓 ∶ ℤ → ℕ!  defined as 𝑓(𝑥) = 	 .2𝑥	 if	𝑥 ≥ 0
2 −𝑥 − 1	 if	𝑥 < 0

0 1 2 3 ⋯-1-2-3⋯

0 1 2 3 4 ⋯5 6



Another view: Enumerate

• Back to the infinite hotel:
• Having ℕ extra customer:  
       We can enumerate all integers in ℤ as follows:
 

0 1 2 3 ⋯

0, -1,  1,  -2,  2,  -3,  3, ⋯⋯  where all integers are reached in finite steps.  

𝑥 ∈ ℤ is reached in ≤ 2 𝑥 + 1 steps.

-2-3⋯

0 1 2 3 4 ⋯5 6

-1



Another view: Enumerate

• Back to the infinite hotel:
• Having ℕ extra customer:  
       We can NOT enumerate all integers in ℤ as follows:
 0, 1,  2,  3,   ⋯⋯ ,-1, −2,⋯⋯	 because -1, -2, … are NOT reached in finite steps.  

0 1 2 3 ⋯-1-2-3⋯

0 1 2 3 4 ⋯5 6



Countability = Enumerability

• If we can enumerate a set S, 
 we can map 𝑠 ∈ 𝑆 to the number of steps (which is finite) it takes to reach s.
   This is injective. Thus 𝑆 ≤ ℕ .

Definition
A set S is said to be countable if 𝑆 ≤ ℕ .

• If S is countable, there must be surjection 𝑓:ℕ → 𝑆.
 we enumerate 𝑓(𝑖) in the 𝑖-th step. 
Because this is surjection, for every 𝑠 ∈ S	, there exists 𝑛 ∈ ℕ such that 𝑓 𝑛 = 𝑠.
Note ∞ ∉ ℕ, 𝑠 is reachable in 𝑛, which is finite, steps.



Subsets

Proof (using injection)
 Let S’ be a subset of S.
 𝑓 𝑥 = 𝑥 is an injection mapping  𝑆, → 𝑆.

Theorem 
A subsets of a countable set is still countable.

Proof (using enumeration)
 Suppose we have an enumeration for S.
 If we only output what is in S’….



Strings
Can we enumerate all strings?
A string is a finite length sequence of letters 
(either 0/1 or a/b/c/d/… depending on your finite alphabet)

YES!

What won’t work: lexicographical order

What would work: We first enumerate all strings of length 1. (a/b/c/d/…)
         Then all strings of length 2. (aa/ab/ac/…)
          …….



Rational Numbers

• How about 𝑄 = A
B
	?    This will NOT work:
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Rational Numbers

• How about 𝑄 = A
B
	?
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Pairs of natural numbers

• ℕ×ℕ = (𝑝, 𝑞)	?



Real numbers

• Real numbers ℝ	can be defined as countably long decimals.
• E.g. 0.0023242321……,   131.42345324…..,  3.1415926……..
• Caveat:  1 = 0.999999……..
               3.3  = 3.29999……….

• [1,∞)	vs (0,1] ?
Bijection 𝑓 𝑥 = )

&
Same cardinality



]

]]]

Real numbers

• ℝ	vs (0,1] ?
ℝ( = 1,∞ ∪ (0,1] has same cardinality as 0,1

𝑓 𝑥 =

𝑥
2 	for	𝑥 ∈ (0,1]

1
2
+
1
2𝑥
	for	𝑥 ∈ [1,∞)	

ℝ( has the same cardinality as ℝ.
   

0 1 2 3 ⋯-1-2-3⋯

0 1 2 3 4 ⋯5 6

( ]( ]( ](((

( ]( ](( ]] ( ( ]



Diagonalization

• Real numbers ℝ	can be defined as countably long decimals.
• E.g. 0.0023242321……,   131.42345324…..,  3.1415926……..
• Caveat:  1 = 0.999999……..
               3.3  = 3.29999……….

• Is	ℝ	countable? 



Diagonalization

• Is	ℝ	countable? 
• NO!

• Proof.
Assume ℝ is countable, then ℝ is enumerable.
Take any enumeration, 
0.32123435……
0.34255235……
0.12342551……
0.59285225……
…………….



Diagonalization

• Is	ℝ	countable? 
• NO!   (Equivalent to proving [0,1) is uncountable. )

• Proof.
Assume [0,1) is countable, then[0,1) is enumerable.
Take any enumeration, 
0.32123435……
0.36255235……
0.12642551……
0.59285225……
…………….

We construct a real number not in the list:  

If the i-th row’s i-th digit is 6, we put 7 in 
the i-th digit of our number. 

Otherwise we put 6.

0.6776……



Diagonalization

• Is	ℝ	countable? 
• NO!   (Equivalent to proving [0,1) is uncountable. )

• Proof.
Assume [0,1) is countable, then[0,1) is enumerable.
Take any enumeration, 
0.32123435……
0.36255235……
0.12642551……
0.59285225……
…………….

Why is not in the list? Proof by 
contradiction.

Why 6 and 7?

0.6776……



Wait a minute…

• We have seen
• The set of all strings are countable.

• This includes every English sentence.

• The set of all real numbers are uncountable.
• => Most of the real numbers cannot be described / named / said!

• A philosophical question: Do they really exist? 
• If a tree falls in a forest….



Power set

• In the same way, we can prove:
 Let 2G = {𝑇 ∣ 𝑇 ⊆ 𝑆} be the powerset of 𝑆.

• 2H must be of a larger cardinality than 𝑆 for any infinite set 𝑆.

• Proof: For any mapping 𝑓: 𝑆 → 2H, 
{𝑥 ∈ 𝑆 ∣ 𝑥 ∉ 𝑓 𝑥 } ∈ 2<

   is not an image of 𝑓.



Power set

• In the same way, we can prove:
 Let 2G = {𝑇 ∣ 𝑇 ⊆ 𝑆} be the powerset of 𝑆.

• 2H must be of a larger cardinality than 𝑆.

• Actual Proof: For any mapping 𝑓: 𝑆 → 2H, 
𝑠) 𝑠* 𝑠=
1 0 1

0
0

1
1

1
0

……

……

……

i-th row and j-th column = 1 
if  𝑠! ∈ 𝑓(𝑠")

𝑓(𝑠))
𝑓(𝑠*)
𝑓(𝑠=)



Power set

• In the same way, we can prove:
 Let 2G = {𝑇 ∣ 𝑇 ⊆ 𝑆} be the powerset of 𝑆.

• 2H must be of a larger cardinality than 𝑆.

• Actual Proof: For any mapping 𝑓: 𝑆 → 2H, 

𝑓(𝑠))
𝑓(𝑠*)
𝑓(𝑠=)

𝑠) 𝑠* 𝑠=
1 0 1

0
0

1
1

1
0

……

……

……

i-th row and j-th column = 1 
if  𝑠! ∈ 𝑓(𝑠")

0 0 1{𝑥 ∈ 𝑆 ∣ 𝑥 ∉ 𝑓 𝑥 }



How about… disjoint Intervals?

• Suppose 𝑆 is a set of disjoint intervals. 
 (e.g. S = {(1,2), (e, 𝜋), (4, 29) ….})

( )( ) ( ) ( )

𝑆 is countable! 

Each interval contains at least one rational number.
We can construct injection 𝑓: 𝑆 → ℚ. 
Mapping intervals to that rational number. So 𝑆 ≤ |ℚ|.


