Lecture 2: Mathematical Proofs

Recap of Lecture 1

- Propositions. (mathematical "sentences")
- " $\sqrt{3}$ is irrational"
- " $1+1$ = 5 "
- NOT Propositions
- " 2 + 2"
- " $3 \mathrm{x}=6$ " without specifying what x is

Recap of Lecture 1

- Variables ("Let x be ")
- In math, we like to name things with variables.
- We can represent propositions with variables as well!
- Let P be " $\sqrt{3}$ is irrational".
- Let Q be " $1+1=5$ ".

Recap of Lecture 1

- Connectives (connect "sentences" to form longer sentences!)
- Conjunction. $\quad P \wedge Q \quad$ ("AND")
- Disjunction. $\quad P \vee Q$ ("OR", logical OR, NOT exclusive OR)
- Negation. $\neg P$ ("NOT")
- Implication. $\quad P \Rightarrow Q \quad$ (Short hand for $(\neg P) \vee Q$)
- Proposition Forms (Connectives + Variables)
- E.g. $(P \wedge Q) \vee((\neg P) \wedge R)$
- You can plug anything into these variables!

Recap of Lecture 1

- Quantifiers ("Range" of the statement)
- "For all". $\quad \forall+$ scope of $x+$ proposition about x
- "Exists". $\exists+$ scope of $x+$ proposition about x
- Logical Equivalence
- Most importantly $(P \Rightarrow Q) \equiv(\neg Q \Rightarrow \neg P)$ "contrapositive"

Today's Outline

- What is a mathematical proof?
- Examples
- Structure
- The art of writing mathematical proofs.
- Direct Proof.
- Proof by contraposition.
- Proof by contradiction.
- Proof by cases.

What is a mathematical proof?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.
Proof.
We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers \mathbf{a}, b.
We know $x^{2}-1=(x+1)(x-1)$.
So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$.
In conclusion, $x^{2}-1$ is divisible by 4 .

What is a mathematical proof?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

What we know is true

We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers a, b.
We know $x^{2}-1=(x+1)(x-1)$.
So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$
What we derived from previous lines

In conclusion, $x^{2}-1$ is divisible by 4 .

What makes the conclusion correct?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

In conclusion, $x^{2}-1$ is divisible by 4 .

What makes the conclusion correct?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers $\mathbf{a}, \mathbf{b} . \nabla$
We know $x^{2}-1=(x+1)(x-1) \cdot \nabla$
So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$.
In conclusion, $x^{2}-1$ is divisible by 4 .

What makes the conclusion correct?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

What we know is true

We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-y=2 a$ and $x+1=2 b$ for integers a, b. ∇
We know $x^{2}-1=(x+1)(x-1)$.
So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$. v
In conclusion, $x^{2}-1$ is divisible by 4 .

What makes the conclusion correct?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

What we know is true

We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers a, b. ∇
We know $x^{2}-1=(x+1)(x-1) \cdot v$
So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$. v
In conclusion, $x^{2}-1$ is divisible by $4 . \nabla$

What makes the conclusion correct?

Example

Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.

We know integer x is odd.
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers a, b. ∇
We know $x^{2}-1=(x+1)(x-1) . v$ So for integers $\mathrm{a}, \mathrm{b}, x^{2}-1=2 a * 2 b=4 a b$. v

What we derived from previous lines

In conclusion, $x^{2}-1$ is divisible by $4 . \nabla$

What is a mathematical proof?

Structure

A mathematical proof is many lines of propositions
proposition-1
proposition-2
proposition-3
.
.
proposition-n (the conclusion we want to prove)
Each line is either known to be correct / derived from previous lines.

What is a mathematical proof?

A proof vs. a poem

Written in many lines.
When is elegantly written, one line more is too much, one line less is incomplete.

For a poem you use repetition, metaphor...... For a proof you use contraposition, contradiction, cases....

What is a mathematical proof?

What make the proof valid.
First, lines that are known to be correct are correct. ∇

Second, lines that derived from known-to-be correct lines are correct. ∇

Third, lines that derived from known-to-be correct lines and lines that became correct in the second step are correct.

At last, the conclusion becomes correct.v

The art of writing mathematical proofs.

Proof Techniques

Direct Proof.

Proof by contraposition.

Proof by contradiction.

Proof by cases.

Direct Proof.

Structure

Goal: To prove $P \Rightarrow Q$.
We can add this assumption because Approach:

Assume P is true. of the statement we are proving

Direct Proof.

Example : The proof we just saw
Prove that if integer x is odd, then $x^{2}-1$ is divisible by 4.

Proof.
We know integer x is odd
So $x-1$ and $x+1$ are even. Let $x-1=2 a$ and $x+1=2 b$ for integers a, b.
What we know is true
We know $x^{2}-1=(x+1)(x-1)$.
What we derived from
So for integers $\mathrm{a}, \mathrm{b}, \mathrm{x}^{2}-1=2 a * 2 b=4 a b$ previous lines
In conclusion, $x^{2}-1$ is divisible by 4 .

Notation setup.

A few notations

Integer
Natural number
Positive Integers
a divides b
Prime number
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
$\mathbb{N}=\{0,1,2, \ldots\} \quad$ (Culture Debate: Does it start from 0? In 70 , it always does!)
$\mathbb{N}_{+}=\{1,2,3, \ldots\}$
$a \mid b$
Only divisible by 1 and itself.

Proof by contraposition.

Structure

Goal: To prove $P \Rightarrow Q$.

- Logical Equivalence
- Most importantly $(P \Rightarrow Q) \equiv(\neg Q \Rightarrow \neg P)$ "contrapositive"

We proved $\neg Q \Rightarrow \neg P$
which is equivalent to

$$
P \Rightarrow Q
$$

Each line is either known to be correct / derived from previous lines.

Proof by contraposition.

Example 1 :

Suppose $n, d \in \mathbb{N}_{+}$and $d \mid n$.
Prove that if n is odd, then d is odd.

Proof.

Assume that d is even.

We proved $\neg Q \Rightarrow \neg P$
which is equivalent to $P \Rightarrow Q$

Then there exists $\mathrm{k} \in \mathbb{N}_{+}$such that $d=2 k$.
Because $d \mid n$, we know there exists $\ell \in \mathbb{N}_{+}$such that $n=\ell d$. Then $n=\ell d=2 \mathrm{k} \ell$. n is even.

Proof by contraposition.

Example 2 (Pigeonhole principle) :
There are n pigeonholes. Suppose there are $n+1$ pigeons in them. There must exists (at least) two pigeons in the same hole.

Pigeonhole Principle

Proof by contraposition.

Example 2 (Pigeonhole principle):
There are n pigeonholes. Suppose there are $n+1$ pigeons in them. There must exists (at least) two pigeons in the same hole.

Proof.
Assume that every hole has only at most one pigeon.
There are n pigeonholes.
Therefore at most n piegons in them.

Proof by contraposition.

Example 3 :
Prove that if n^{2} is even, then n is even.

Proof.
Assume that n is odd and $n=2 k+1$.
Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$.
Hence n^{2} is odd.

Proof by contradiction.

Structure

Goal: To prove P.
Approach:
Assume $\neg P$ is true.

The only possibility for a contradiction is that our assumption is wrong.

Each line is either known to be correct / derived from previous lines.

Proof by contradiction.

Example 1.

Prove there exists infinitely many primes.

Proof.
Assume that there are only finitely many primes.
Let these primes be $p_{1}<p_{2}<\cdots<p_{n}$.
Then consider $m=p_{1} p_{2} \cdots p_{n}+1$.
Every natural number is either a prime or has a prime divisor.
(We know this Is true. Might prove later in class.)

Because m is not divisible by $p_{1}, p_{2}, \ldots, p_{n}$, m must be a prime. This contradicts that $p_{1}, p_{2}, \ldots, p_{n}$ are the only primes. $\left(m>p_{n}\right)$ Thus there exits infinitely many primes.

Proof by contradiction.

Example 2.
Prove that $\sqrt{2}$ is irrational.
Proof.
Assume that rational.
There exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}$. Thus, $p^{2}=2 q^{2}$.
Let x be the odd number such that $q=2^{y} \cdot x$.
$p^{2}=2 q^{2}=2^{2 y+1} \cdot x^{2}$
Because p^{2} is a square, it must have an even number of prime factor 2. (We know this Is true.)
x^{2} must be even. Then x is even.
Contradiction. Thus $\sqrt{2}$ is irrational.

Proof by cases.

Structure

Goal: To prove P.
Approach:
Assume R is true.
P is true.

Now instead assume $\neg R$ is true.
P is true.
Therefore P is always true.

Proof by cases.

Example (Again, Pigeonhole principle) :
There are n holes. Suppose there are $n+1$ pigeons in them. There must exists (at least) two pigeons in the same hole.

Proof.
Among the first n pigeons, if there are two pigeons in the same hole.
Then there must exists (at least) two pigeons in the same hole among all $n+1$ pigeons.

Among the first n pigeons, if there are NOT two pigeons in the same hole. Then because there are n holes, each hole must have one pigeon in it.
The $(n+1)$-th pigeon must be in the same hole with another pigeon.

A hidden proof technique: Reduction

The interview

A mathematician is interviewing for a prestigious job. To make sure he has the right morals, the interviewer gives him the following situation:
"You're late for a meeting, when you come across a burning house, a fire hydrant, and a fire hose lying across the street. What do you do?"

The mathematician responds: "People's lives are more important than the meeting. I screw the fire hose into the hydrant and put out the fire before coming to the office."

A hidden proof technique: Reduction

The interview
The interviewer is impressed, but asks him a followup question just to make sure:
"You're late for a meeting when you pass a fire hose connected to a hydrant, next to a perfectly safe house. What do you do?"

The mathematician thinks for a moment, then replies:
"I unscrew the fire hose, carry it across the street, and set the house on fire. Then I've reduced it to a problem I've already solved."

A proof is correct / wrong

The world of mathematics is cruel.

"Rope breaks at its thinnest point."

There is no such thing as a 99% correct proof. That is just a wrong proof.

Any step on the logic chain is wrong, the proof is wrong.

When actually writing a proof

DO NOT have to separate it in lines.
Make it concise and elegant.

