
Lecture 19: Concentration Inequalities



Example: Coupon Collector
-  In my childhood, there was a brand of instant noodles 
 called little Raccoon (小浣熊). 

- If you buy a bag, you get a uniformly random card from 
	 𝑛 cards.  

-  How many bag in expectation do you need to 
    buy to collect all cards?



Example: Coupon Collector - Expectation
The trick: 
    Linearity of expectation
    Let 𝑋 be the number of bags until you collect all cards. We want 𝔼 𝑋 .

    Let 𝑋! be the number of bags until you collect the first card (𝑋! = 1 always) 
    Let 𝑋" be the number of additional bags until you collect the second card
   ……..

    𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋# is true in any outcome.
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Example: Coupon Collector - Expectation
The trick: 
    Linearity of expectation
    Let 𝑋 be the number of bags until you collect all cards. We want 𝔼 𝑋 .
    𝔼 𝑋 = 𝔼 𝑋! + 𝔼 𝑋" +⋯+ 𝔼 𝑋# .
    What is the distribution of 𝑋$?

    You have collected 𝑖 − 1 cards. Every bag you buy, there is a $%!
#

 chance you 
get a old card. 

    There is a 𝑝 = #%($%!)
#

 chance you success and get a new card.



Example: Coupon Collector - Expectation
The trick: 

𝔼 𝑋 = 𝔼 𝑋! + 𝔼 𝑋" +⋯+ 𝔼 𝑋# .

    You have collected 𝑖 − 1 cards. Every bag you buy, there is a $%!
#

 chance you 
get a old card. 

    There is a 𝑝$ =
#%($%!)

#
 chance you success and get a new card.

    This is a Bernoulli process. 𝑋$ ∼ Geometric(𝑝$).

     𝔼 𝑋$ = !
(!
= #

#%($%!)
.



Example: Coupon Collector - Expectation
The trick: 

𝔼 𝑋 = 𝔼 𝑋! + 𝔼 𝑋" +⋯+ 𝔼 𝑋# .

    You have collected 𝑖 − 1 cards. Every bag you buy, there is a $%!
#

 chance you 
get a old card. 

    There is a 𝑝$ =
#%($%!)

#
 chance you success and get a new card.

𝔼 𝑋! =
1
𝑝!
=

𝑛
𝑛 − (𝑖 − 1)

.

𝔼 𝑋 = 𝔼 𝑋! + 𝔼 𝑋" +⋯+ 𝔼 𝑋# .
     = #

#
+ #

#%!
+⋯+ #

!
≈ 𝑛	log	𝑛



Example: Coupon Collector - Variance
The trick: 
   𝑋!, 𝑋", 𝑋)⋯⋯ are independent geometric random variables.

Last lecture: Geometric(𝑝$) has variance !%(!
(!"

.

 Var 𝑋 = Var 𝑋! + Var 𝑋" +⋯+ Var 𝑋# = ∑$*!# !% #$!%&
#

#$!%&
#

"



Recap: Inclusion-Exclusion
Inclusion Exclusion

 Let 𝐸, 𝐹 be two (not necessarily independent) events. We have 
   ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ 𝐸 ∩ 𝐹  

𝐸 𝐹



Union bound
Union bound

 Let 𝐸, 𝐹 be two (not necessarily independent) events. We have 
   ℙ 𝐸 ∪ 𝐹 ≤ ℙ 𝐸 + ℙ 𝐹 − ℙ 𝐸 ∩ 𝐹

𝐸 𝐹



Union bound
Example.

    Elon Musk’s spaceship has 
    3,000,000 parts. Suppose each part has 10%"+ probability of failure during 
    the mission (not necessarily independent), and one failure could destroy      
    the entire mission.
    Can you give an estimate of the success probability of the mission?
 Solution.
 Apply union bound on 𝐸!, 𝐸", … , 𝐸),+++,+++. 
          ℙ 𝐸! ∪ 𝐸" ∪⋯∪ 𝐸),+++,+++ ≤ ∑$*!

),+++,+++ℙ 𝐸$ ≤ 3 ∗ 10- ∗ 10%"+



Concentration and tail bound
Intuition.

 Previously, we saw two distributions.
 The Blue distribution is more concentrated than the Orange one.
 The Orange one is more uniform / spread out /  uncertain….



Concentration and tail bound
Intuition.

 One way to compare them is by looking at variance.
 The is another way: Looking at tail probabilities.

ℙ[𝑋 ≤ −8] ℙ[𝑋 ≥ 8]



Markov’s Inequality
Theorem.

 Let 𝑋 be a positive random variable.
 We have 

ℙ 𝑋 ≥ 𝑐 ≤
𝔼 𝑋
𝑐

     Proof.
   𝔼 𝑋 = ℙ 𝑋 ≥ 𝑐 ⋅ 𝔼 𝑋	 𝑋 ≥ 𝑐] + ℙ 𝑋 < 𝑐 ⋅ 𝔼 𝑋	 𝑋 < 𝑐]
               (law of total expectation)

                                  ≥ ℙ 𝑋 ≥ 𝑐 ⋅ 𝑐 + 0
                 (positivity)



Markov’s Inequality
Theorem.

 Let 𝑋 be a positive random variable.
 We have 

ℙ 𝑋 ≥ 𝑐 ≤
𝔼 𝑋
𝑐

     



Markov’s Inequality
Example (Lottery).

 Say Hongxun bought a lottery and wins 𝑋 ≥ 0 dollars.
 The lottery is worth 𝔼 𝑋 = 10 dollars.
 What is the probability that Hongxun wins 𝑋 ≥ 1,000,000 dollars?

    ℙ 𝑋 ≥ 1,000,000 ≤ !+
!,+++,+++

≤ 10%. probability.

  



Chebyshev’s Inequality
Motivation.

 Expectation 𝔼 𝑋  is “first-moment” information.
 Variance Var 𝑋  is    “second-moment” information.
 With more information, can we give tighter (&two-sided) tail bound?
     Theorem.

 Let 𝑋 be a random variable.
 We have 

    ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑐 ≤ !"# $
%"



Chebyshev’s Inequality
Theorem.

 Let 𝑋 be a random variable.
 We have 

    ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑐 ≤ !"# $
%"

     Proof.
  Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋 & .
   By Markov inequality, 

  ℙ 𝑋 − 𝔼 𝑋 & ≥ 𝑐& ≤ 𝔼 $(𝔼 $ "

%"
= !"# $

%"



Learn from Samples
Setup.

 Say there is a coin with head probability 𝑝 (fixed but unknown).
 We can flip the coin and get independent samples 

𝑋), 𝑋&, … , 𝑋* ∼ Bernoulli(𝑝)
 How do we estimate 𝑝?   How good is our estimation?

    Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛



Learn from Samples
Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛
       How good is it?

 Expectation:    𝔼 �̂� = 𝔼[$&,$",⋯,$#]
*

= *⋅𝔼[$&]
*

= 𝑝
 
 Unbiased.



Learn from Samples
Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛
       How good is it?

 Variance:    Var �̂� = !"#[$&,$",⋯,$#]
*"

= *⋅!"#[$&]
*"

            Var 𝑋) = 𝔼 𝑋)& − 𝔼 𝑋) & = 𝑝 − 𝑝& = 𝑝(1 − 𝑝)

            Var �̂� = 0()(0)
*

.  



Learn from Samples
Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛
       How good is it?
 Chebyshev’s Inequality:

   ℙ �̂� − 𝑝 ≥ 𝑐 ≤ !"# 30
%"

= 0()(0)
*⋅%"

 With n samples,  to make this probability < 0.1,   𝑐 ≤ )
*

.

 To get accuracy 𝑐, we need 𝑛 ≈ )
%"

 samples.



Learn from Samples
Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛
       How good is it?
 Chebyshev’s Inequality:

   ℙ �̂� − 𝑝 ≥ 𝑐 ≤ !"# 30
%"

= 0()(0)
*⋅%"

 = 45678"68
*⋅%"

≤ 0.1

  è. 𝑐& ≥ 45678"68
*⋅9.)

= 45678"68
*

 With n samples,  to make this probability < 0.1,   𝑐 ≥ )
*

.

 To get accuracy 𝑐, we need 𝑛 ≈ )
%"

 samples.



Learn from Samples
Estimator.

�̂� =
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛
       How good is it?
 Chebyshev’s Inequality:

   ℙ �̂� − 𝑝 ≥ 𝑐 ≤ !"# 30
%"

= 0()(0)
*⋅%"

 Fix 𝑐. As 𝑛 → ∞, the probability  ℙ �̂� − 𝑝 ≥ 𝑐 → 0.

Law of large numbers.



Law of large numbers
Theorem.

   Let 𝑋), 𝑋&, … , 𝑋* be I.I.D. (independent & identically distributed) random 
variables with common finite expectation 𝔼 𝑋; = 𝜇  and variance Var 𝑋; =
𝜎&. 
     For every 𝜖 > 0	, as 𝑛 → ∞, we have 

ℙ
𝑋) + 𝑋& +⋯+ 𝑋*

𝑛
− 𝜇 ≥ 𝜖 → 0

     
This justifies the foundation of the scientific paradigm of repeating 
experiments and taking their average.



Estimating Variance?
Biased Estimator.

Y𝑉 =
1
𝑛
[
;<)

*

𝑋; −
𝑋) + 𝑋& +	⋯+ 𝑋*

𝑛

&

       
       It does NOT satisfy 𝔼[ Y𝑉] = 𝜎&. In fact, it under-estimates 𝜎&. 

        Why?   See discussion session.



Statistical learning & AI systems
The biggest thing these days.

Chatgpt Language models



Statistical learning & AI systems
One view of the world:

The world can be viewed as a joint distribution:
 Let 𝑠 = 𝑤*𝑤+⋯𝑤, be an English sentence.
 ℙ s = ℙ[s	appears	as	a	random	sensible	English	sentence]

Example:
  ℙ one	plus	one	equals	two = 1×10-. 
  ℙ one	plus	one	equals	three = 1×10-/0



Statistical learning & AI systems
One view of the world:

The world can be viewed as a joint distribution:
 Let 𝑠 = 𝑤*𝑤+⋯𝑤, be an English sentence.
 ℙ s = ℙ[s	appears	as	a	random	sensible	English	sentence]

Inference:
  select 𝑤;  that maximizes ℙ 𝑤! 	𝑤*, 𝑤+, … , 𝑤!-*) 
  ℙ two	|	one	plus	one	equals	 = 0.9 
  ℙ three	|	one	plus	one	equals = 0.01



Statistical learning & AI systems
One view of the world:

The world can be viewed as a joint distribution:
 Let 𝑠 = 𝑤*𝑤+⋯𝑤, be an English sentence.
 ℙ s = ℙ[s	appears	as	a	random	sensible	English	sentence]

Inference:
  select 𝑤;  that maximizes ℙ 𝑤! 	𝑤*, 𝑤+, … , 𝑤!-*) 
  ℙ sad	|	Hearing	your	loss, I	am	really	 = 0.4 
  ℙ sorry	|Hearing	your	loss, I	am	really = 0.4
  ℙ laughing	|Hearing	your	loss, I	am	really = 10-.



Statistical learning & AI systems
One view of the world:

The world can be viewed as a joint distribution:
 Let 𝑠 = 𝑤*𝑤+⋯𝑤, be an English sentence.
 ℙ s = ℙ[s	appears	as	a	random	sensible	English	sentence]

The beauty of this view:
We want model output to be true facts / be grammatically correct / have emotion / ……
    ≈  find s	that maximizes this probability.



What used to be an issue: Curse of 
dimensionality

The issue in the past:
Suppose there are (n = 100) words
 ℙ 𝑠 = 𝑤*𝑤+⋯𝑤, = ℙ s	appears	as	a	random	sensible	English	sentence . 
With even just 100 most frequent words, 
 there are 100*00 many probabilities to estimate. 
Entire Internet size in 2023:   1.2×10*.  MB.

The modern approach:
Instead assume that ℙ 𝑠 = 𝑤*𝑤+⋯𝑤, = f1 𝑠  by a function f1 with fewer parameters 𝜃.
f1 is your neural network (nowadays more specifically, your transformers.)
Magically one can learn 𝜃 from data and magically it works.


