Lecture 19: Concentration Inequalities




Example: Coupon Collector

- In my childhood, there was a brand of instant noodles
called little Raccoon (/N EE).

- If you buy a bag, you get a uniformly random card from
n cards.

- How many bag in expectation do you need to

buy to collect all cards?




Example: Coupon Collector - Expectation

The trick:
Let X be the number of bags until you collect all cards. We want E[X].

Let X; be the number of bags until you collect the first card (X; = 1 always)
Let X, be the number of additional bags until you collect the second card

X =X, + X, + -+ X, istrue in any outcome.



Example: Coupon Collector - Expectation

The trick:
Let X be the number of bags until you collect all cards. We want E[X].

Let X; be the number of bags until you collect the first card (X; = 1 always)
Let X, be the number of additional bags until you collect the second card

E[X] = E[X;] + E[X,] + - + E[X,,].



Example: Coupon Collector - Expectation

The trick:

Let X be the number of bags until you collect all cards. We want E[X].
E|X] = E|X{] + E[X,] + - + E|X,,].
What is the distribution of X;?

You have collected i — 1 cards. Every bag you buy, there is a % chance you
get a old card.

There is a chance you success and get a new card.



Example: Coupon Collector - Expectation
The trick:
E[X] = E[X,] + E[X,] + - + E[X,,].

You have collected i — 1 cards. Every bag you buy, there is a % chance you
get a old card.

There is a chance you success and get a new card.

This is a Bernoulli process. X; ~ Geometric(p;).
1 n

ElX;] == n—(i-1)"




Example: Coupon Collector - Expectation

The trick:
E|X]| = E[X;] + E|X,] + --- + E[X,,].

You have collected i — 1 cards. Every bag you buy, there is a % chance you
get a old card.

There is a chance you success and get a new card.
E[X.] = 1 - n
Y n—=(G-1)

E[X] = E[X;] + E[X,] + -+ E[X,,].

Py ™ 2 nlogn
n n-—1 1



Example: Coupon Collector - Variance

The trick:
X1, Xo, Xgoeeees are independent geometric random variables.

1—
2

Last lecture: Geometric(»;) has variance

1— n—i+1
Var[X| = Var[X; | + Var[X,]| + --- + Var[X, | = ?=1 (n(—i:;)z)

n




Recap: Inclusion-Exclusion

Inclusion Exclusion

Let £, F be two (not necessarily independent) events. We have
P[E U F] = P|E] + P[F] — P[E N F]




Union bound

Union bound
Let £, F be two (not necessarily independent) events. We have

PIE U F] < PE] + P[F] — P Ea k]




Union bound

Example.
Elon Musk’s spaceship has | N
3,000,000 parts. Suppose each part has 1072° probablllty of fallure durlng
the mission ( ), and one failure could destroy

the entire mission.
Can you give an estimate of the success probability of the mission?

Solution.
Apply union bound on £, E5, ..., E3 900.000-

P[E; U E, U+ U E3000000] < Ximy " P[E;] <3100+ 10720



Concentration and tail bound

Intuition.

Previously, we saw two distributions.

The Blue distribution is more concentrated than the

The

one is more uniform / spread out / uncertain....
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Concentration and tail bound

Intuition.
One way to compare them is by looking at
The is another way: Looking at tail probabilities.
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Markov’s Inequality

Theorem.
Let X be a positive random variable.

We have
E[X]

C

P[X > ] <

Proof.
E[X] =P[X =] E[X|X =c]+P[X <] E[X|X < (]
(law of total expectation)
>P|X=>c]l-c+0
(positivity)



Markov’s Inequality

Theorem.

Let X be a positive random variable.

We have

0 H ku
- > >

H (k—1)u

Figure 1: Markov’s inequality interpreted as balancing a seesaw.



Markov’s Inequality

Example (Lottery).
Say Hongxun bought a lottery and wins X = 0 dollars.
The lottery is worth E[X| = 10 dollars.
What is the probability that Hongxun wins X = 1,000,000 dollars?

10

P[X > ] < < 107° probability.




Chebyshev’s Inequality

Motivation.
Expectation [E|[X] is “first-moment” information.
Variance Var|[X| is “second-moment” information.

Theorem.

Let X be a random variable.

We have

P[|X — E[X]| = ¢] < L2X




Chebyshev’s Inequality

Theorem.

Let X be a random variable.

We have

P[|X — E[X]] > ] < 224

Proof.
Var[X] = E[(X — E[X])?].
By Markov inequality,

P[(X — E[X]? = ¢?] < E|(X-E[x])?| _ Var[X]




Learn from Samples

Setup.
Say there is a coin with head probability p (fixed but unknown).

We can flip the coin and get independent samples
X1, X5, ..., X, ~ Bernoulli(p)

How do we estimate p? How good is our estimation?

Estimator.
X1 +Xo+ -+ X,

n

D =



Learn from Samples

Estimator.
Xl +X2 —I— ..._I_Xn

n

D =

How good is it?

Expectation: [E[p] = E[Xq+Xp++Xn] _ n-E[X;]

n n

Unbiased.




Learn from Samples

Estimator.
Kt X+ X
= n
How good is it?
Variance: Var[p] = Var[X1+;<§+---+Xn] _ n-ViI;[Xl]

Var[X,] = E[X?] — E[X,]? = p — p? = p(1 — p)




Learn from Samples

Estimator.
X1+ X+ -+ X,

n

ﬁ —

How good is it?
Chebyshev’s Inequality:
P[lﬁ . Pl > ] < Var[p] — p(1-p)

n.

With n samples, to make this probability < 0.1, ¢ < %

1
To get accuracy ¢, we need n = — samples.



Learn from Samples

Estimator.
X1+ X+ -+ X,

n

ﬁ —

How good is it?
Chebyshev’s Inequality:
Pllp—pl=cl < -~ -

9 CZ > constant . constant

Var[p] _ p(1-p) constant

n- o n
With n samples, to make this probability < 0.1, ¢ = %

1
To get accuracy ¢, we need n = — samples.



Learn from Samples

Estimator.
X1+ X+ -+ X,

n

ﬁ —
How good is it?
Chebyshev’s Inequality:

P[lﬁ . pl > C] < Var[p] — p(1-p)

c2 n-c?

Fix c. As n = oo, the probability P[|p — p| = ¢] = 0.

Law of large numbers.



Law of large numbers

Theorem.

Let X{, X, ..., X,, be LI.D. (independent & identically distributed) random

variables with common finite expectation E|X;| = 1 and variance Var[.X;]| =

g2,

For every ¢ > ,as n — oo, we have

d

This justifies the foundation of the scientific paradigm of repeating
experiments and taking their average.

X, +X, ++X,
n

—,LL|ZE]—>O



Estimating Variance?

Biased Estimator.

n

| X;+ X+ -+ X\

V== (Xi_ 1 2 n)
N 4 n

1=1

It does NOT satisfy E[V] = o2. In fact, it under-estimates a2,

Why? See discussion session.



Statistical learning & Al systems

The biggest thing these days.

Probabilities
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Chatgpt Language models



Statistical learning & Al systems

One view of the world:

The world can be viewed as a joint distribution:
Let s = wyw, --- W, be an English sentence.

[P(s) = IP[s appears as a random sensible English sentence]

Example:

P(one plus one equals two) = 1x1077

P(one plus one equals three) = 1x1073°



Statistical learning & Al systems

One view of the world:

The world can be viewed as a joint distribution:
Let s = wyw, --- W, be an English sentence.

[P(s) = IP[s appears as a random sensible English sentence]

Inference:
Wl [P)(Wll W1, W»o, ""Wi—l)
P(two | one plus one equals ) = 0.9

P(three | one plus one equals) = 0.01



Statistical learning & Al systems

One view of the world:

The world can be viewed as a joint distribution:
Let s = wyw, --- W, be an English sentence.

[P(s) = IP[s appears as a random sensible English sentence]

Inference:
Wl [P)(Wll W1, W»o, ""Wi—l)
P(sad | Hearing your loss, I am really ) = 0.4

P(sorry |Hearing your loss, I am really) = 0.4

P(laughing |Hearing your loss, [ am really) = 10~



Statistical learning & Al systems

One view of the world:

The world can be viewed as a joint distribution:
Let s = wyw, --- W, be an English sentence.

[P(s) = IP[s appears as a random sensible English sentence]

The beauty of this view:
We want model output to be true facts / be grammatically correct / have emotion / ......

=~ find s that maximizes this probability.



What used to be an issue: Curse of
dimensionality

The issue in the past:
Suppose there are (n = 100) words

P(s = wiw, .- wy,) = P|s appears as a random sensible English sentence].
With even just 100 most frequent words,

0100

there are 10 many probabilities to estimate.

Entire Internet size in 2023: 1.2x1017 MB.

The modern approach:

Instead assume that P(s = wyw, - wy,) = fg(s) by a function fg with fewer parameters 6.
fg is your (nowadays more specifically, )

Magically one can learn 6 from data and magically it works.



