
Lecture 18: Variance and Covariance



Recap: Random Variable
Definition (Random Variable)
  A random variable 𝑋 is a function	𝑋: Ω → ℝ.
  For every outcome 𝜔, it has a value 𝑋 𝜔 .
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Recap: Expectation
Definition.

 The expectation of a random variable 𝑋 is defined as, 
	 	 	 	 𝔼 𝑋 = ∑!ℙ 𝑋 = 𝑎 ⋅ 𝑎 .
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Recap: Function of random variable
Definition.

 If 𝑋:Ω → ℝ is a random variable, then we can define another random 
variable Y = 𝑓(𝑋) for function 𝑓.  
 For every outcome 𝜔, it has a value. 𝑓(𝑋 𝜔 ).

     Example.
  Y = 𝑋, HTTH
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Recap: Function of random variable
Definition.

 If 𝑋:Ω → ℝ is a random variable, then we can define another random 
variable Y = 𝑓(𝑋) for function 𝑓.   
           We can also talk about the expectation of that random variable.

𝔼 𝑓 𝑋 =8
!

𝑓 𝑎 ⋅ ℙ[𝑋 = 𝑎]



Variance
Intuition.

 Say there are two distributions both of expectation 0.  
 The Blue distribution is more concentrated than the Orange one.
 The Orange one is more uniform / spread out /  uncertain….



Variance
Intuition.

 How do we characterize this?
 deviation from expectation:   𝑋	 − 𝔼[𝑋]
                                                 𝔼 𝑋	 − 𝔼[𝑋] = 0
 



Variance
Intuition.

 How do we characterize this?
 deviation from expectation:   𝑋	 − 𝔼[𝑋]
                                𝔼 |𝑋	 − 𝔼 𝑋 | ?  Hard to take derivative..  
 



Variance
Intuition.

 How do we characterize this?
 deviation from expectation:   𝑋	 − 𝔼[𝑋]
                                𝔼 𝑋	 − 𝔼[𝑋] , .  
 



Variance
Definition.

 If 𝑋:Ω → ℝ is a random variable, its variance is:
Var 𝑋 = 𝔼- 𝑋	 − 𝔼 𝑋 ,

     Example. 
 Let’s slow down and truly understand it!
 𝔼 𝑋  is a number that doesn’t depend on probability space of outer X.
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Variance
Definition.

 If 𝑋:Ω → ℝ is a random variable, its variance is:
Var 𝑋 = 𝔼- 𝑋	 − 𝔼 𝑋 ,

     Example. 
 Let’s slow down and truly understand it!
 X − 𝔼 𝑋  is random variable.
 
 𝑋 = 2

𝑋	 − 𝔼 𝑋
= −0.75

𝑋 = 2
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= −0.75

𝑋 = 4
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𝑋 = 3
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= 0.25



Variance
Definition.

 If 𝑋:Ω → ℝ is a random variable, its variance is:
Var 𝑋 = 𝔼- 𝑋	 − 𝔼 𝑋 ,

     Example. 
 Let’s slow down and truly understand it!
 (X − 𝔼 𝑋 )^2 is also a random variable and 𝔼- 𝑋	 − 𝔼 𝑋 ,  is its 

expectation.
 
 



Alternative Formula
Alternative Formula.

 If 𝑋:Ω → ℝ is a random variable, its variance is:
Var 𝑋 = 𝔼 𝑋, − 𝔼 𝑋 ,

     “Expectation of the square minus the square of expectation”
     Proof. 
  Var 𝑋 = 𝔼[ 𝑋	 − 𝔼 𝑋 ,]    (Definition)

  = 𝔼[𝑋, − 2 ⋅ 𝔼 𝑋 ⋅ 𝑋 + 𝔼 𝑋 ,]  ( 𝑎 − 𝑏 ! = 𝑎! − 2𝑎𝑏 + 𝑏!)

 = 𝔼 𝑋, − 2 ⋅ 𝔼 𝑋 ⋅ 𝔼 𝑋 + 𝔼 𝑋 ,            (Linearity of expectation)

      = 𝔼 𝑋, − 𝔼 𝑋 ,



Example: The matching problem, revisited.
Example (The matching problem).
n cats each has a bowl with their name on it. However, when it comes 
time for dinner, each cat 𝑖	goes to a random bowl 𝑝.  such that no two 
cats select the same bowl.

Suppose 𝑝 is uniformly random over all permutations. Let 𝑋 be the 
number of cats who got their own bowl. 

We have seen 𝔼 𝑋 = 1.
What is Var[𝑋]?



Example: The matching problem, revisited.
Sol. Recall the method of indicators,
  𝑋. = 𝟏[the	𝑖 − th	cat	got	its	own	bowl] 
   𝑋 = 𝑋/ + 𝑋, +⋯+ 𝑋0

    Var 𝑋 = 𝔼 𝑋, − 𝔼 𝑋 ,

   𝑋, = 𝑋/ + 𝑋, +⋯+ 𝑋0 ,

         = 𝑋/, + 𝑋,, +⋯+ 𝑋0, + 2𝑋/𝑋, + 2𝑋/𝑋1 +⋯+ 2𝑋02/𝑋0 
  
  We then need to calculate 𝔼 𝑋.,  and 𝔼 𝑋.𝑋3 	(𝑖 < 𝑗). 



Example: The matching problem, revisited.
Sol.  
  𝑋. = 𝟏[the	𝑖 − th	cat	got	its	own	bowl] 
 We then need to calculate 𝔼 𝑋.,  and 𝔼 𝑋.𝑋3 𝑖 < 𝑗 .
 

  Since 𝑋.  is indicator, 𝑋., = 𝑋.. So 𝔼 𝑋., = 𝔼 𝑋. = /
0

.

  𝔼 𝑋.𝑋3 = ℙ 𝑖 − th	and	𝑗 − th	cats	got	their	bowls = /
0
⋅ /
02/

.

  𝔼 𝑋, = 𝔼 𝑋/, + 𝑋,, +⋯+ 𝑋0, + 2𝑋/𝑋, + 2𝑋/𝑋1 +⋯+ 2𝑋02/𝑋0
       = 𝑛 ⋅ /

0
+ 0 02/

,
⋅ 2 ⋅ /

0
⋅ /
02/



Multiply by constant
Definition.

Var 𝑐𝑋 = 𝑐, ⋅ Var 𝑋
     Proof. 
     Var 𝑐𝑋 = 𝔼 (𝑐𝑋), − 𝔼 𝑐𝑋 ,     (Alternative formula)

    = 𝑐, ⋅ 𝔼 𝑋, − 𝑐, ⋅ 𝔼 𝑋 , 
     = 𝑐, ⋅ Var 𝑋



Standard Deviation
Definition.

𝜎 𝑋 = Var 𝑋
     
     Intuition
  Say  with ½ probability  𝑋 = −𝑎
          with ½ probability  𝑋 = +𝑎 
   𝔼 𝑋 = 0
   Var 𝑋 = 𝑎,

   𝜎 𝑋 = 𝑎 
  “≈ deviation from expectation” 



Standard Deviation
Definition.

𝜎 𝑋 = Var 𝑋
     
     Lemma

𝜎 𝑐 ⋅ 𝑋 = 𝑐 ⋅ 𝜎[𝑋]



Variance of the Sum of independent R.V.s 
Lemma.

 If 𝑋, 𝑌 are two independent random variable, 
Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

     Proof. 
  Var 𝑋 + 𝑌 = 𝔼 𝑋 + 𝑌 . − 𝔼 𝑋 + 𝑌 .  (alternative formula)

  = 𝔼 𝑋. + 2𝑋𝑌 + 𝑌. 	− 𝔼 𝑋 + 𝔼 𝑌 .

                             = 𝔼 𝑋. + 2	𝔼[𝑋𝑌] + 𝔼[𝑌.] − (𝔼 𝑋 . + 2𝔼 𝑋 𝔼 𝑌 + 𝔼 𝑌 .)
         (linearity of expectation)

   = 𝔼 𝑋. + 2	𝔼 𝑋 𝔼[𝑌] + 𝔼[𝑌.] − (𝔼 𝑋 . + 2𝔼 𝑋 𝔼 𝑌 + 𝔼 𝑌 .)

         (independence)

   = 𝔼 𝑋. − 𝔼 𝑋 . + 𝔼 𝑌. − 𝔼 𝑌 .



Variance of the Sum of independent R.V.s 

Why it is true? What does the proof tell us?
 For independent  RV,  

𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼 𝑌
 In other words, 

𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼 𝑌 = 0

  



Variance of the Sum of independent R.V.s 
Lemma.

 If 𝑋, 𝑌 are two independent random variable, 
Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

     Comment. 
  What if they are not independent?

 Eg. 𝑋 = 𝑌 always.   Var 𝑋 + 𝑌 = Var 2𝑋 = 4 ⋅ Var 𝑋 ≫ Var 𝑋 + Var 𝑌

             (positively correlated)
          𝑋 = −𝑌 always.   Var 𝑋 + 𝑌 = Var[0] = 0

       (negatively correlated)



Covariance and Correlation
Definition.

 If 𝑋, 𝑌: Ω → ℝ are two jointly distributed random variable, their 
 covariance
   Cov 𝑋, 𝑌 = 𝔼-,5 𝑋	 − 𝔼 𝑋 𝑌	 − 𝔼 𝑌
     Alternative Formula. 
   Cov 𝑋, 𝑌 = 𝔼-,5 𝑋𝑌 − 𝔼 𝑋  𝔼 𝑌
      Proof. 
                        𝔼-,5 𝑋	 − 𝔼 𝑋 𝑌	 − 𝔼 𝑌
                             = 𝔼-,5 𝑋𝑌 − 𝔼 𝑋 𝔼 𝑌  − 𝔼 𝑋 𝔼 𝑌 + 𝔼 𝑋  𝔼 𝑌
                    = 𝔼-,5 𝑋𝑌 − 𝔼 𝑋  𝔼 𝑌



Covariance and Correlation
Lemma.

 If 𝑋, 𝑌 are two random variables, 
  Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2 Cov 𝑋, 𝑌
    Proof. 
 Assuming 𝑋, 𝑌 are mean-zero (𝔼[𝑋]=𝔼 𝑌 = 0). 
  Var 𝑋 + 𝑌 = 𝔼 𝑋 + 𝑌 ,

   = 𝔼 𝑋, + 𝔼 𝑌, − 2 ⋅ 𝔼 𝑋𝑌
 What if 𝑋, 𝑌 are not mean-zero ?
   𝑋′= 𝑋- 𝔼 𝑋 .  𝑌′= 𝑌- 𝔼 𝑌 .    



Covariance and Correlation
Definition.

 If 𝑋, 𝑌: Ω → ℝ are two jointly distributed random variable, their 
 correlation

   Corr 𝑋, 𝑌 = Cov -,5
6 - 6 5

= 𝔼[(-2𝔼 - )(52𝔼[5])]
6 - 6 5

     Correlation is normalized.
  Corr 𝑐 ⋅ 𝑋, 𝑌 = Corr 𝑋, 𝑐 ⋅ 𝑌 = Corr 𝑋, 𝑌 .

 −1 ≤ Corr 𝑋, 𝑌 = Corr 𝑋, 𝑐 ⋅ 𝑌 = Corr 𝑋, 𝑌 ≤ 1.
           (Proof by Cauchy–Schwarz inequality)



Covariance and Correlation
Example.

 Say 𝑋 is the temperature in Berkeley tmr.
        𝑌 is the temperature in Palo alto tmr.

 As toy model, let’s there is a 1/2 chance of raining in bay area tmr.
 If it is sunny, the temperature in Berkeley will be 70F. 
            That in Palo alto will be either 70F or 80F each with prob 1/2.

 If it rains, the temperature in Berkeley will be 60F. 
           That in Palo alto will be 50F or 80F each with prob 1/2.



Covariance and Correlation
Example.

 If it is sunny, the temperature in Berkeley will be 70F. 
            That in Palo alto will be either 70F or 80F each with prob 1/2.

 If it rains, the temperature in Berkeley will be 60F. 
           That in Palo alto will be 50F or 80F each with prob 1/2.
 For Berkeley,  𝔼[𝑋] = 65. For Palo alto,  𝔼[𝑌] = 70.
 

  Cov 𝑋, 𝑌 = 𝔼 (𝑋 − 𝔼 𝑋 )(𝑌 − 𝔼[𝑌]) = /∗12/∗312 4/ ∗ 4.1 2 4/ ∗31
5 = 25



Covariance and Correlation
Example.

 If it is sunny, the temperature in Berkeley will be 70F. 
            That in Palo alto will be either 70F or 80F each with prob 1/2.

 If it rains, the temperature in Berkeley will be 60F. 
           That in Palo alto will be 50F or 80F each with prob 1/2.

  Cov 𝑋, 𝑌 = 25,  𝜎 𝑋 = Var 𝑋 = 5, 𝜎 𝑌 = Var 𝑌 = 12.24… .

  Corr 𝑋, 𝑌 = ./
/	∗3...5 = 0.408… . .	



Correlation does not imply Causality

https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations


Correlation does not imply Causality



Correlation does not imply Causality



Correlation does not imply Causality



The Book of Why      by          Judea Pearl



Example: Variance of Bernoulli distribution
Bernoulli distribution

 With probability 𝑝,         we have 𝑋 = 1.
 With probability 1 − 𝑝, we have 𝑋 = 0.

    Variance
 Var 𝑋 = 𝔼 𝑋! − 𝔼 𝑋 !

 𝔼 𝑋 = 𝑝
 𝔼 𝑋! = 𝑝

 Var 𝑋 	= 𝑝 − 𝑝! = 𝑝(1 − 𝑝)
 



Example: Variance of Geometric distribution
Geometric distribution

 With probability 𝑝,                    we have 𝑋 = 1.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 2.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 3.
 ………..
    Variance

 We know 𝔼 𝑋 = /
<
.    

   𝔼 𝑋, = 𝑝 ⋅ 1 + 1 − 𝑝 𝔼 𝑋,	 𝑋 ≥ 2]



Example: Variance of Geometric distribution
Geometric distribution

 With probability 𝑝,                    we have 𝑋 = 1.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 2.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 3.
 ………..
    Distribution of 𝑋	|	𝑋 ≥ 2 = Distribution of 𝑋 + 1 !
 With probability 𝑝,                    we have 𝑋 = 2.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 3.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 4.
 ………..



Example: Variance of Geometric distribution
Geometric distribution

 With probability 𝑝,                    we have 𝑋 = 1.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 2.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 3.
 ………..
    Variance

 We know 𝔼 𝑋 = /
<
.    𝔼 𝑋, = 𝑝 + 1 − 𝑝 𝔼[ 1 + 𝑋 ,] (self-ref trick)



Example: Variance of Geometric distribution
Geometric distribution

 With probability 𝑝,                    we have 𝑋 = 1.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 2.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 3.
 ………..
    Variance

 We know 𝔼 𝑋 = /
<
.    𝔼 𝑋, = 𝑝 + 1 − 𝑝 𝔼[ 1 + 𝑋 ,] (self-ref trick)

	 𝔼 𝑋, = 𝑝 + 1 − 𝑝 (𝔼 𝑋, + 2 ⋅ 𝔼 𝑋 + 1)

 Solve the equation => 𝔼 𝑋, = /=,(/2<)/<
<

= ,2<
<!



Example: Variance of Geometric distribution
Geometric distribution

 With probability 𝑝,                    we have 𝑋 = 1.
 With probability	𝑝 ⋅ (1 − 𝑝),   we have 𝑋 = 2.
 With probability	𝑝 ⋅ 1 − 𝑝 ,, we have 𝑋 = 3.
 ………..
    Variance

 We know 𝔼 𝑋 = /
<
.   𝔼 𝑋, = /=,(/2<)/<

<
= ,2<

<!

 Var 𝑋 = ,2<
<!

− /
<

,
= /2<

<!
.


