Lecture 18: Variance and Covariance
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Recap: Random Variable

Definition (Random Variable)
A random variable X is a function X: () = R.
For every outcome w, it has a value X(w).
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Recap: Expectation

Definition.
The expectation of a random variable X is defined as,

E[X] =Y, P[X =da] -a.
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Recap: Function of random variable

Definition.

If X: () — Ris arandom variable, then we can define another random
variable Y = f(X) for function f.

For every outcome , it has a value. f(X(w)).

Example.
Y = X?




Recap: Function of random variable

Definition.
If X: is @ random variable, then we can define another random
variable Y = f(X) for function f.
We can also talk about the of that random variable.

E[f (0] = ) f(a) - P[X = a]



Variance

Intuition.

Say there are two distributions both of expectation 0.

The Blue distribution is more concentrated than the

The one is more uniform / spread out / uncertain....
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Variance

Intuition.
How do we characterize this?
deviation from expectation: X — [E[X]
E[X —E[X]]=0
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Variance

Intuition.

How do we characterize this? 2 T o j 2

deviation from expectation: X — [E[X]
E[|X — E|X]||]? Hard to take derivative..
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Variance o 7
Intuition. ]
How do we characterize this? i
deviation from expectation: X — [E|X] s O o o o

E[(X — E[XD].
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Variance

Definition.

If X: () — [Ris arandom variable, its variance is:
Var[X] = Ex[(X — E[X])*]

Example.
Let’s slow down and truly understand it!
E|X | is a number that doesn’t depend on probability space of outer X.




Variance

Definition.

If X: () — [Ris arandom variable, its variance is:
Var[X] = Ex[(X — E[X])*]

Example.

Let’s slow down and truly understand it!
X — [E|X| is random variable.




Variance

Definition.
If X: is @ random variable, its variance is:
Var[X] = Ex[(X — E[X])*]
Example.

Let’s slow down and truly understand it!

(X — E[X])”"2 is also a random variable and E,[(X — E[X])?#] is its
expectation.



Alternative Formula

Alternative Formula.

If X: () — [Ris arandom variable, its variance is:
Var[X] = E[X?] — E[X]?

“Expectation of the square minus the square of expectation

Proof.

Var[X] [(X — IE[ ])2] (Definition)
= E[X? -2 -E[X]| X+ E[X]*] ((a— b)? = a? — 2ab + b?)
= E :Xz] —2-E|X]|-E[X]+ [E[X]Z (Linearity of expectation)
= E[x?] — E[x]?




Example: The matching problem, revisited.

Example (The matching problem).

n cats each has a bowl with their name on it. However, when it comes
time for dinner, each cat i goes to a random bowl p; such that no two

cats select the same bowl.

Suppose p is uniformly random over all permutations. Let X be the
number of cats who got their own bowl.

We have seen E|X]| = 1.
What is Var|X]?




Example: The matching problem, revisited.

Sol. Recall the method of indicators,
X; = 1[the i — th cat got its own bowl]|
X=X +X,++X,

Var[X] = E[X?] — E[X]?
Xe=X +X,+ -+ X,)*
=X+ X7+ -+ X2 +2X. X, +2X, X5 + -+ 2X,_1 X,

We then need to calculate ]E[Xlz] and IE[Xl-Xj] (i <j).



Example: The matching problem, revisited.

Sol.
X; = 1[the i — th cat got its own bowl]|

We then need to calculate ]E[Xlz] and IE[XL-X]-: (i <j).

Since X; is indicator, X7 = X;. So E|[X?| = E[X;] =
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IE[Xin] = P|i — th and j — th cats got their bowls
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= E|X? + XZ + -+ X2+ 2X, X, + 2X, X5 + - + 2X,_1 Xy,
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Multiply by constant

Definition.
Var[cX] = ¢# - Var[X]

Proof.
Var[cX] = E[(cX)?] — E[cX]?
= c? - E[X?] — c¢? - E[X]?
= ¢? - Var[X]



Standard Deviation

Definition.

olX] = \/Var[X]

Intuition
Say with %2 probability X = —a
with % probability X = +a
E[X] =
Var[X] = a?
olX] =
“~ deviation from expectation”



Standard Deviation

Definition.

olX] = \/Var[X]

Lemma
oglc-X] =c:alX]



Variance of the Sum of independent R.V.s

Lemma.

If X,Y are two independent random variable,

Proof.

Var[X + Y] = E
=E
=E

Var|[X + Y] = Var[X] + Var[Y]

(X +Y)?] — E[X + Y]? (alternative formula)
X2 4+ 2XY +Y?] — (E[X] + E[Y])?

X2+ 2 E[XY] + E[Y?] — (E[X]? + 2E[X]E[Y] + E[Y]?)

(linearity of expectation)

= E[X?] + 2 E[X]E[Y] + E[Y?] — (E[X]? + 2E[X]E[Y] + E[Y]?)

(independence)

= (E[X*] — E[X]?) + (E[Y*] = E[V]*)



Variance of the Sum of independent R.V.s

Why it is true? What does the proof tell us?

For independent RV,
E[XY] = E|X] - E[Y]

In other words,
E[XY] — E[X]-E[Y] =0



Variance of the Sum of independent R.V.s

Lemma.

If X,Y are two independent random variable,
Var|X + Y| = Var[X] + Var|Y]

Comment.
What if they are not independent:

Eg. X =Y always. Var[X + Y] = Var[2X] =4 - Var[X] > Var[X] + Var[Y]

X = —Y always. Var|[X + Y] =Var[0] =0



Covariance and Correlation

Definition.

If X,Y: (), — IR are two jointly distributed random variable, their
covariance

CovlX, V] = Exy[(X —E[XD( —E[Y])]
Alternative Formula.
Cov|X,Y] = Exy[XY] — E[X] E[V]
Proof.
Exy[(X — E[XD —E[Y])]
= Eyy[XY] — E[X]E[Y]| — E[X]|E[Y] + E[X]| E[Y]
= Exy[XY] - E[X] E[Y]



Covariance and Correlation

Lemma.
If X,Y are two random variables,
Var|X + Y] = Var|X] + Var|Y] + 2 Cov|X, Y]
Proof.
Assuming X, Y are mean-zero (E[X]=E|Y] = 0).
Var[X + Y] = E[(X + Y)?]
= E[X?] + E[Y?] — 2 - E[XY]
What if X, Y are not mean-zero ?
X'= X- E[X]. Y'=Y-E[Y].



Covariance and Correlation

Definition.

If X,Y: are two jointly distributed random variable, their
correlation

Covx,y] _ E[(X-E[X)(Y=E[Y])]

c(X)a(Y) o(X)a(¥)

Corr|X, Y] =

Correlation is normalized.
Corrlc - X, Y] = Corr|X,c - Y] = Corr|X, Y].

—1 < Corr|[X,Y]| = Corr[X,c - Y] = Corr[X,Y] < 1.



Covariance and Correlation

Example.
Say X is the temperature in Berkeley tmr.

Y is the temperature in Palo alto tmr.

As toy model, let’s there is a 1/2 chance of raining in bay area tmr.
If it is , the temperature in Berkeley will be 70F.
That in Palo alto will be either 70F or 80F each with prob 1/2.

If it rains, the temperature in Berkeley will be 60F.
That in Palo alto will be 50F or 80F each with prob 1/2.



Covariance and Correlation

Example.

If it is , the temperature in Berkeley will be 70F.
That in Palo alto will be either 70F or 80F each with prob 1/2.

If it rains, the temperature in Berkeley will be 60F.
That in Palo alto will be 50F or 80F each with prob 1/2.
For Berkeley, E|X| = 65. For Palo alto, E|Y| = 70.

__ 5%0+5%10+(—5)*(—20)+(—=5)*10 __
— " —
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Cov[X,Y] = E[(X — E[X])(Y — E[Y])]



Covariance and Correlation

Example.

If it is , the temperature in Berkeley will be 70F.
That in Palo alto will be either 70F or 80F each with prob 1/2.

If it rains, the temperature in Berkeley will be 60F.
That in Palo alto will be 50F or 80F each with prob 1/2.

Cov|X,Y] = 25, o|X] =+/Var[X] =5, o[Y] =+ Var|[Y] = 12.24 ....

25
5%12.24

Corr[X,Y] = = 0.408.....



Correlation does not imply Causality

T'ﬂ’oe,ll\/che,r\l . ComM about - email me - subscribe

spurious correlations

correlation is not causation
random - discover - next page —

don't miss spurious scholar,
where each of these is an academic paper

https://www.tylervigen.com/spurious-correlations



https://www.tylervigen.com/spurious-correlations

Correlation does not imply Causality
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Correlation does not imply Causality

Popularity of the first name Lamont
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Correlation does not imply Causality

Frozen yogurt consumption
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Example: Variance of Bernoulli distribution

Bernoulli distribution

With probability p, we have X = 1.
With probability 1 — p, we have X = 0.

Variance
Var[X] = E[X2] — E[X]?



Example: Variance of Geometric distribution

Geometric distribution
With probability p, we have X = 1.
With probabilityp - (1 —p), we have X = 2.

With probability p - (1 — p)?, we have X = 3.

Variance
We know [E|X %.
E[X?]=p-1+ ({1 —p)E[X?|X = 2]




Example: Variance of Geometric distribution

Geometric distribution
With probability p, we have X = 1.
With probabilityp - (1 —p), we have X = 2.

With probability p - (1 — p)?%, we have X = 3.
Distribution of X | X = 2 = Distribution of X + 1!
With probability p, we have X = 2.
With probabilityp - (1 —p), we have X = 3.

With probability p - (1 — p)?, we have X = 4.



Example: Variance of Geometric distribution

Geometric distribution
With probability p, we have X = 1.
With probabilityp - (1 —p), we have X = 2.

With probability p - (1 — p)?, we have X = 3.

Variance

We know E[X]| = %. E[X“]=p+ (1 —p)E[(1+ X)?]



Example: Variance of Geometric distribution

Geometric distribution
With probability p, we have X = 1.
With probabilityp - (1 —p), we have X = 2.

With probability p - (1 — p)?, we have X = 3.

Variance
We know E|X| = %. E[X?] =p+ (1 —p)E[(1 + X)?]
E[X?]=p+ (1 —p)(E[X?] + 2 E[X]| + 1)
[E[XZ] _ 1+2(1-p)/p _ 2-p

p p?




Example: Variance of Geometric distribution

Geometric distribution
With probability p, we have X = 1.
With probabilityp - (1 —p), we have X = 2.

With probability p - (1 — p)?, we have X = 3.

Variance
We know E[X] = 1 E[X?] = 1+2(1-p)/p _ 2;219
p p p
_2-p _ (1\° _1-p




