
Lecture 17: Random Counts
& Famous distributions
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Personal takes on how to learn math
•  Math is a language.

• Sorted by importance:
• Definitions
• Examples
• Proofs.

• The point of a proof is not only to prove the theorem is true, but more 
importantly to convey the intuition of why it is true.



Law of total expectation
Theorem (Law of total expectation).
 For any event 𝐸 and variable 𝑋, 
	 	 	 𝔼 𝑋 = 𝔼 𝑋 ∣ 𝐸 ⋅ ℙ[𝐸] + 𝔼 𝑋 ∣ ¬𝐸 ⋅ ℙ[¬𝐸].



Law of total expectation
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Law of total expectation
Theorem (Law of total expectation).
 For any disjoint event 𝐸/, 𝐸0, …𝐸1 that covers all possibilities 
(i.e., 𝐸/ ∪ 𝐸0,∪ ⋯∪ 𝐸1	 = Ω ) and variable 𝑋, 

𝔼 𝑋 = 𝔼 𝑋 ∣ 𝐸/ ⋅ ℙ 𝐸/ + 𝔼 𝑋 ∣ 𝐸0 ⋅ ℙ 𝐸0 +⋯𝔼 𝑋 ∣ 𝐸2 ⋅ ℙ 𝐸1 .

𝐸- 𝐸. ⋯𝐸/ 𝐸0



Function of random variable
Definition.

 If 𝑋:Ω → ℝ is a random variable, then we can define another random 
variable Y = 𝑓(𝑋) for function 𝑓.  
 For every outcome 𝜔, it has a value. 𝑓(𝑋 𝜔 ).

     Example.
  Y = 𝑋0 HTTH

HHHH

THHH
THHT

𝑋 = 2
Y = 4

𝑋 = 2
Y = 4

𝑋 = 4
   Y = 16

𝑋 = 3
 Y = 9



Function of random variable
LOTUS (Law of the unconscious Statistician).

 If 𝑋:Ω → ℝ is a random variable, then we can define another random 
variable Y = 𝑓(𝑋) for function 𝑓.   
           We can also talk about the expectation of that random variable.

𝔼 𝑓 𝑋 =;
3

𝑓 𝑎 ⋅ ℙ[𝑋 = 𝑎]



Law of iterated expectation
Lemma.
 For any two random variables 𝑋 and 𝑌, 
	 	 	 																𝔼4[𝔼5 𝑋|𝑌 ] = 𝔼 𝑋
	 Or,	
	 	 	 			∑6 𝔼5 𝑋|𝑌 = 𝑏 ⋅ Pr 𝑌 = 𝑏 = 𝔼 𝑋

Break it down:
 For 𝔼5 𝑋|𝑌 , 𝑌 is a free variable. 
 
 This is a function about 𝑌.

𝔼! 𝑋|𝑌

𝑌 = 𝑎 

ℝ



Law of iterated expectation
Lemma.
 For any two random variables 𝑋 and 𝑌, 
	 	 	 																𝔼4[𝔼5 𝑋|𝑌 ] = 𝔼 𝑋
	 Or,	
	 	 	 			∑6 𝔼5 𝑋|𝑌 = 𝑏 ⋅ Pr 𝑌 = 𝑏 = 𝔼 𝑋

Break it down:
 Let 𝑓 𝑏 = 𝔼5 𝑋|𝑌 = 𝑏 .
	 𝔼4[𝔼5 𝑋|𝑌 ]	simply means 𝔼 𝑓 𝑌 .



Recall the random walk

0 1

2/31/3

On a number axis that is infinitely long on both ends, you start from 0.
 Each step:
  With probability 2/3, you walk length one right.
  With probability 1/3, you walk length one left.



Recall the random walk

0 1

2/31/3

Initially, you are at 𝑥6 = 0.
 Each step:
  With probability 2/3, 𝑥7 = 𝑥78- − 1.  
  With probability 1/3, 𝑥7 = 𝑥78- + 1. 



Recall the random walk

0 1

2/31/3

1/3

2/3 You’re at 1.

You’re at 0.

You’re at -1.

1/3

2/3

You’re at -2.

You’re at 0. 

2/3 You’re at 1. 

1/3

2/3 …

…

1/3 …



Probability Space
 We can intuitively think of random process as evolving possibilities. 
 
 

Random process (Intuition)

H

T

HH

HT

TH

TT

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT



Bernoulli Process
Definition 
    A Bernoulli process with parameter 𝑝 is the process of tossing coins, 
    𝑐-, 𝑐., ⋯ , 𝑐:, ⋯ ∈ {𝐻, 𝑇}	where 𝑐: = 𝐻 independently with probability 𝑝.

………

Let’s count things in this process!



Bernoulli Distribution
Random Variable 
    In a Bernoulli process with parameter 𝑝, let 𝑋 be result of a single coin. 
    (X=1 for H, X=0 for T)

Distribution
   𝑋 = 0 with probability 1-p.
   𝑋 = 1 with probability p.

Expectation   
  𝔼 𝑋 = 𝑝.



Geometric Distribution
Random Variable 
    In a Bernoulli process with parameter 𝑝, let 𝑋 be the position of the first head.

T

………

T T T TH H

In this example,  𝑋 = 4.



Geometric Distribution
Random Variable 
    In a Bernoulli process with parameter 𝑝, let 𝑋 be the position of the first head.

Distribution

    Probability that 𝑋 = 1 : 𝑝
    Probability that 𝑋 = 2 : (1 − 𝑝) ⋅ 𝑝.
    Probability that 𝑋 = 3 : 1 − 𝑝 " ⋅ 𝑝 .
    …………….
    Probability that 𝑋 = i : 1 − 𝑝 #$% ⋅ 𝑝 .

				This is called the Geometric distribution.  Denoted by 𝑋 ∼ Geometric 𝑝 .

1 − 𝑝

𝑝 H.  𝑋 = 1

T.

𝑝

1 − 𝑝

TH.  𝑋 = 2

TT.  

𝑝

1 − 𝑝 TTT.  

TTH. 𝑋 = 3 

𝑝

1 − 𝑝 ….  

….  



Geometric Distribution
Distribution
    Probability that 𝑋 = 1 : 𝑝
    Probability that 𝑋 = 2 : (1 − 𝑝) ⋅ 𝑝.
    Probability that 𝑋 = 3 : 1 − 𝑝 " ⋅ 𝑝 .
    …………….
    Probability that 𝑋 = i : 1 − 𝑝 #$% ⋅ 𝑝 .

				This is called the Geometric distribution.  Denoted by 𝑋 ∼ Geo 𝑝 .

1 − 𝑝

𝑝 H.  𝑋 = 1

T.

𝑝

1 − 𝑝

TH.  𝑋 = 2

TT.  

𝑝

1 − 𝑝 TTT.  

TTH. 𝑋 = 3 

𝑝

1 − 𝑝 ….  

….  

Check sum = 1
   ∑#&%' 1 − 𝑝 #	$% ⋅ 𝑝 = %

%$(%$*)
⋅ 𝑝 = 1	

   In the first step, we used
   1 + 𝑥 + 𝑥" +⋯ = %

%$,
.  This is true for all −1 < 𝑥 < 1.



Geometric Distribution



Expectation
 Solution 1: The self-referencing trick.
 
 𝔼 𝑋 = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 𝔼 𝑋	 Lirst	coin	is	T]
           = 𝑝 + 1 − 𝑝 	(1 + 	𝔼 𝑋 )
  
 𝔼 𝑋 = %

*
.

  
 
 

Geometric Distribution

1 − 𝑝

𝑝 H.  𝑋 = 1

T.

𝑝

1 − 𝑝

TH.  𝑋 = 2

TT.  

𝑝

1 − 𝑝 TTT.  

TTH. 𝑋 = 3 

𝑝

1 − 𝑝 ….  

….  



Expectation
 Solution 2: The alternative formula for expectation.
 Suppose 𝑋 ∈ ℤ*.

 Formula 1 (def):  𝔼 𝑋 = ∑+∈ℤ! 𝑎 ⋅ ℙ 𝑋 = 𝑎 .
 
 
 Formula 2 (new):  𝔼 𝑋 = ∑+∈ℤ!ℙ 𝑋 ≥ 𝑎 . 

 
 ℙ 𝑋 ≥ 1 + ℙ 𝑋 ≥ 2 + ℙ 𝑋 ≥ 3 +⋯
              = ℙ 𝑋 = 1 + ℙ 𝑋 = 1 + ℙ 𝑋 = 2 + ℙ 𝑋 = 1 + ℙ 𝑋 = 2 + ℙ 𝑋 = 3 +⋯
              = 1 ⋅ ℙ 𝑋 = 1 + 2 ⋅ ℙ 𝑋 = 2 + 3 ⋅ ℙ 𝑋 = 2 +⋯
     

Geometric Distribution

𝑎



Expectation
 Solution 2: The alternative formula for expectation.
 Suppose 𝑋 ∈ ℤ*.
 
 Formula 2 (new):  𝔼 𝑋 = ∑+∈ℤ!ℙ 𝑋 ≥ 𝑎

   = ∑+∈ℤ! 1 − 𝑝
+-. (first a-1 coins being T)

   = .
.-(.-0)

    = .
0

 

Geometric Distribution

𝑎



Geometric Distribution
Exercise 1
 Let 𝑋, 𝑌 ∼ Geometric(𝑝). What is 𝔼 min(𝑋, 𝑌) ?

A:
 Consider the Bernoulli process:
  

………𝑌.

𝑋. ………

min(𝑋, 𝑌) is tossing two coins in each step & looking for first head.



Geometric Distribution
Exercise 1
 Let 𝑋, 𝑌 ∼ Geometric(𝑝). What is 𝔼 min(𝑋, 𝑌) ?

A:  

………𝑌.

𝑋. ………

This is the same as tossing a single coin with probability 1 − 1 − 𝑝 .

min(𝑋, 𝑌) 



Geometric Distribution
Exercise 1
 Let 𝑋, 𝑌 ∼ Geometric(𝑝). What is 𝔼 min(𝑋, 𝑌) ?

A:  
This is the same as tossing a single coin with probability 1 − 1 − 𝑝 .

𝔼 min(𝑋, 𝑌) =
1

1 − 1 − 𝑝 .



Geometric Distribution
Exercise 2
 Let 𝑋, 𝑌 ∼ Geometric(𝑝). What is 𝔼 max(𝑋, 𝑌) ?



Geometric Distribution
Exercise 2
 Let 𝑋, 𝑌 ∼ Geometric(𝑝). What is 𝔼 max(𝑋, 𝑌) ?

Inclusion Exclusion for expectation
 Let 𝑋, 𝑌 be random variables. We have 
   𝔼 max(𝑋, 𝑌) = 𝔼 𝑋 + 𝔼 𝑌 − 𝔼 min(𝑋, 𝑌)  
 Why? 
   max(𝑋, 𝑌) + min 𝑋, 𝑌 = 𝑋 + 𝑌 holds for all outcome.
 Then use linearity of expectation.



Binomial Distribution
Random Variable 
    In a Bernoulli process with parameter 𝑝 with n coins, 
 let 𝑋 be the total number of heads.

T T T T TH H

In this example, 𝑛 = 7	and 𝑋 = 2.



Binomial Distribution
Random Variable 
    In a Bernoulli process with parameter 𝑝 with n coins, 
 let 𝑋 be the total number of heads.

Distribution
ℙ 𝑋 = 𝑘 = #outcomes	with	𝑘	heads ⋅ ℙ[one	such	outcome]

      = 0
T ⋅ 𝑝T 1 − 𝑝 08T

 
        Denoted by 𝑋 ∼ Binomial 𝑛, 𝑝 .



Binomial Distribution
Distribution

ℙ 𝑋 = 𝑘 = #outcomes	with	𝑘	heads ⋅ ℙ[one	such	outcome]
      = 0

T ⋅ 𝑝T 1 − 𝑝 08T



Binomial Distribution
Expectation
 Let 𝑋: = 𝟏[the	𝑖 − th	coin	is	head] be the indicator variable.

 𝑋 = 𝑋- + 𝑋. + 𝑋/ +⋯+ 𝑋0 in any possible world.

 By linearity of expectation, 

 𝔼[𝑋] = 𝔼[𝑋-] + 𝔼 𝑋. + 𝔼 𝑋/ +⋯+ 𝔼[𝑋0]
           = 𝑝 + 𝑝 + 𝑝 +⋯+ 𝑝
           = 𝑛𝑝



Poisson Process
Intuition 
    In reality, not everything is discrete. 
     E.g.  When you walk in Tenderloin, SF around 10 pm,  you could get robbed anytime.
 It could happen at t = 10 : 00 : 3.141516……..

 Or in a McDonald, people could walk in anytime.

How do we model this?



Poisson Process
Intuition (Discretization)
    Let’s take a unit time interval and divide it into n → ∞ segments .

0t Δ 2Δ 3Δ

⋯⋯

⋯⋯

For each segment with length Δ = 1/n → 0,	
 we view it as a coin with probability 𝜆/𝑛 of being head.

     This process is the limit of Binomial 𝑛, V0  when n → ∞.

1



Poisson Process
Intuition (Discretization)
    Let’s take a unit time interval and divide it into n → ∞ segments .

0t Δ 2Δ 3Δ

⋯⋯

⋯⋯

This process is the limit of Binomial 𝑛, V0  when n → ∞.

      ℙ 𝑋 = 𝑖 = lim
0→X

0
T ⋅ V

0

:
⋅ 1 − V

0

08:

             = V)

:! ⋅ 𝑒
8V (If you are interested, see notes for the calculation.)

1



Poisson Distribution
Intuition (Discretization)
    Let’s take a unit time interval and divide it into n → ∞ segments .

0t Δ 2Δ 3Δ

⋯⋯

⋯⋯

Let 𝑋 be the random variable denoting the number of heads in this interval. 
      Its distribution is the limit of  Binomial 𝑛, V

0
 when 𝑛 → ∞.

      We call it Poisson distribution.

1



Poisson Distribution
Definition 
    A variable 𝑋 is said to obey Poisson distribution with rate 𝜆 (𝑋 ∼ Poisson(𝜆))
if 

	ℙ 𝑋 = 𝑖 =
𝜆:

𝑖!
⋅ 𝑒8V

Expectation 

𝔼 𝑋 = lim
0→X

𝑛 ⋅
𝜆
𝑛
= 𝜆.



Sum of Poisson variables.
Lemma 
    If 𝑋 ∼ Poisson(𝜆) and Y ∼ Poisson 𝜆 , then their sum

X + Y ∼ Poisson 2𝜆

Proof. 
    What are 𝑋 and 𝑌?  They are the number of heads in a unit interval. 
   
     What is X + Y?  Number of heads in time two. 

     We can speed up the clock by 2x. The rate at which head occurs x2. 



Sum of Poisson variables.
Lemma 
    If 𝑋 ∼ Poisson(𝜆-) and Y ∼ Poisson 𝜆. , then their sum

X + Y ∼ Poisson 𝜆- + 𝜆.

Proof. 
    Try to convince yourself. Or look at the notes. 



The first head?
Q:
    In a Poisson process with rate 𝜆, what is the probability that the first head 
occurs after time 𝑡?

A: 
     For a fixed time 𝑡, let 𝑋 be the number of heads during this time. 
 
    𝑋 ∼ Poisson(λ ⋅ 𝑡)

     Thus ℙ 𝑋 = 0 = V7 *+

6! ⋅ 𝑒8V7 = 𝑒8V7 ⋅


