
Lecture 16: Expectation
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Expectation
Intuition (Lottery Example).

 Say there are two lotteries:
 1.   10% prob. of winning $1000
 2.   0.01$ prob. of winning $2000

 Which one is more preferable?

 10% ⋅ 1000 = 100    >>.    0.01% ⋅ 2000 = 0.2



Expectation
Definition-1.

 The expectation of a random variable 𝑋 is defined as, 
	 	 	 	 𝔼 𝑋 = ∑! 𝑋(𝜔) ⋅ ℙ(𝜔) .
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Expectation
Definition-2.

 The expectation of a random variable 𝑋 is defined as, 
	 	 	 	 𝔼 𝑋 = ∑,ℙ 𝑋 = 𝑎 ⋅ 𝑎 .
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Expectation
Definition.

 The expectation of a random variable 𝑋 is defined as, 
	 	 	 	 𝔼 𝑋 = ∑,ℙ 𝑋 = 𝑎 ⋅ 𝑎 .



Linearity of Expectation
Theorem (Linearity).

 For two jointly distributed random variables 𝑋, 𝑌, 
	 	 	 	 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 .
 Note 𝑋, 𝑌 do not need to be independent.

Proof. 
	 𝔼 𝑋 + 𝑌 = ∑,,.ℙ 𝑋 = 𝑎, 𝑌 = 𝑏 ⋅ (𝑎 + 𝑏)
                   = ∑,,.ℙ 𝑋 = 𝑎, 𝑌 = 𝑏 ⋅ 𝑎 + ∑,,.ℙ 𝑋 = 𝑎, 𝑌 = 𝑏 ⋅ 𝑏
                   = ∑,ℙ 𝑋 = 𝑎 ⋅ 𝑎 + ∑.ℙ 𝑌 = 𝑏 ⋅ 𝑏
         = 𝔼[𝑋] + 𝔼[𝑌]



Linearity of Expectation (Example)
Example (The matching problem).
n cats each has a bowl with their name on 
it. However, when it comes time for 
dinner, each cat 𝑖	goes to a random bowl 
𝑝/  such that no two cats select the same 
bowl.

Suppose 𝑝 is uniformly random over all 
permutations. Let 𝑋 be the number of 
cats who got their own bowl. 
What is 𝔼[𝑋]?



Linearity of Expectation (Example)

Lucky Cookie Tuanzi



Linearity of Expectation (Example)
Example (The matching problem).
Let’s try the definition first.

𝔼 𝑋 = <
,01

2

ℙ 𝑋 = 𝑎 ⋅ 𝑎

where ℙ 𝑋 = 𝑎 = ℙ Exactly	𝑎	cats	got	their	bowl

         = #{56789:;:<=>	@	A<:B	CD;E:FG	,	H<D6I	5=<>:J}
2!

Too hard!



Linearity of Expectation (Example)
Example (The hat-check problem).
Let’s try the linearity approach. Let 
   𝑋/ = 𝟏[the	𝑖-th	cat	got	its	own	bowl] 
be a 0/1 indicator random variable. 
 (This is also called the method of indicators.)

We know in any possible world (any outcome),
𝑋 = 𝑋M + 𝑋N +⋯+ 𝑋2 .



Linearity of Expectation (Example)
Example (The hat-check problem).
Thus, by linearity, we know in expectation,

E[𝑋] = E[𝑋M] + E[𝑋N] + ⋯+ E[𝑋2].

By symmetry, we know 
   E 𝑋M = E 𝑋N = ⋯ = E 𝑋2

What is E 𝑋M ?
  E 𝑋M = ℙ 1st	cat	gets	its	bowl = 1/𝑛



Linearity of Expectation (Example)
Example (The hat-check problem).
Thus, by linearity, we know in expectation,

E 𝑋 = E 𝑋M + E 𝑋N +⋯+ E 𝑋2 = 1.

By symmetry, we know 
   E 𝑋M = E 𝑋N = ⋯ = E 𝑋2 = 1/𝑛



Conditional Expectation
Definition.

 Conditioning on an event E, the distribution of 𝑋|𝐸 becomes

    ℙ 𝑋 = 𝑎 𝐸 = ℙ[Q0,	∧	S	]
ℙ[S]

.

 
 and the conditional expectation, 
     𝔼 𝑋 𝐸 = ∑,ℙ 𝑋 = 𝑎 𝐸 ⋅ 𝑎
             = ∑!∈S ℙ 𝜔 𝐸 ⋅ 𝑎



Conditional Expectation
A sometimes useful formula.

    𝔼 𝑋 𝐸 = 𝔼 Q⋅𝟏!
ℙ[S]

 

 where	𝟏S  is the indicator variable where 𝟏S 𝜔 = 𝟏[𝜔	 ∈ 𝐸].
    Proof.
   𝔼 𝑋 𝐸 = ∑!∈S ℙ 𝜔|𝐸 ⋅ 𝑋(𝜔)
           = ∑!∈Yℙ 𝜔|𝐸 ⋅ 𝑋 𝜔 ⋅ 	𝟏S (𝜔)

           = ∑!∈Y
ℙ !
ℙ[S]

⋅ 𝑋 𝜔 ⋅ 	𝟏S (𝜔)

           = M
ℙ[S]

⋅ ∑!∈Yℙ 𝜔 ⋅ 𝑋 𝜔 ⋅ 	𝟏S 𝜔 = 𝔼 Q⋅𝟏!
ℙ[S]

Intuitively, 𝔼 𝑋 ⋅ 𝟏!  is the event E part of X. 
𝔼 𝑋 𝐸  is just take that part out, and multiply it
by a factor of "

ℙ[!]
 due to conditioning.



Law of total expectation
Previously,  we have learned law of total probability:

   Theorem (Law of total probability).
 For any event 𝐸 and 𝐹, 
	 	 	 ℙ 𝐹 = ℙ 𝐹 ∣ 𝐸 ⋅ ℙ[𝐸] + ℙ 𝐹 ∣ ¬𝐸 ⋅ ℙ[¬𝐸].

 Theorem (Law of total expectation).
 For any event 𝐸 and variable 𝑋, 
	 	 	 𝔼 𝑋 = 𝔼 𝑋 ∣ 𝐸 ⋅ ℙ[𝐸] + 𝔼 𝑋 ∣ ¬𝐸 ⋅ ℙ[¬𝐸].



Law of total expectation
Theorem (Law of total expectation).

 For any event 𝐸 and variable 𝑋, 
	 	 	 𝔼 𝑋 = 𝔼 𝑋 ∣ 𝐸 ⋅ ℙ[𝐸] + 𝔼 𝑋 ∣ ¬𝐸 ⋅ ℙ[¬𝐸]  
    Proof
  𝔼 𝑋 = ∑,ℙ 𝑋 = 𝑎 ⋅ 𝑎
  = ∑,(ℙ 𝑋 = 𝑎	|	𝐸 ⋅ ℙ 𝐸 	+ ℙ 𝑋 = 𝑎	|¬𝐸 ⋅ ℙ[¬𝐸]) ⋅ 𝑎
  = ℙ 𝐸 ⋅ ∑,ℙ 𝑋 = 𝑎	|	𝐸 ⋅ 𝑎 + ℙ ¬𝐸 ⋅ ∑,ℙ 𝑋 = 𝑎	|¬𝐸 ⋅ 𝑎
  = ℙ 𝐸 ⋅ 𝔼 𝑋 ∣ 𝐸 + ℙ ¬𝐸 ⋅ 𝔼 𝑋 ∣ ¬𝐸
 



Multiplication Law of Independent Random 
Variables

Theorem.
 For any two independent random variables 𝑋 and 𝑌, 
	 	 	 																𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼[𝑌]



Analogue w/ Counting
Multiplication rule in expectation
 For any two independent random variables 𝑋 and 𝑌, 
	 	 	 																𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼 𝑌

Multiplication rule in counting
  If every one of A cases has B subcases, in total there are AB subcases. 
  A cases 

B subcases



Law of iterated expectation
Lemma.
 For any two random variables 𝑋 and 𝑌, 
	 	 	 																𝔼Z[𝔼Q 𝑋|𝑌 ] = 𝔼 𝑋

What does this mean?

𝑌 = 1
𝑌 = 5 𝑌 = 6

𝑌 = 2
𝑋=1

𝑋=4
𝑋=4

𝑋=2 𝑋=3

𝑋=-1
𝑋=5

𝔼 𝑋



Law of iterated expectation
Lemma.
 For any two random variables 𝑋 and 𝑌, 
	 	 	 																𝔼Z[𝔼Q 𝑋|𝑌 ] = 𝔼 𝑋

What does this mean?

𝑌 = 1
𝑌 = 5 𝑌 = 6

𝑌 = 2
𝑋=1

𝑋=4
𝑋=4
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𝔼 𝑋|𝑌 = 1



Law of iterated expectation
Lemma.
 For any two random variables 𝑋 and 𝑌, 
	 	 	 																𝔼Z[𝔼Q 𝑋|𝑌 ] = 𝔼 𝑋

What does this mean?

𝑌 = 1
𝑌 = 5 𝑌 = 6

𝑌 = 2
𝑋=1

𝑋=4
𝑋=4

𝑋=2 𝑋=3

𝑋=-1
𝑋=5

𝔼 𝑋|𝑌 = 1
𝔼 𝑋|𝑌 = 5

𝔼 𝑋|𝑌 = 6

𝔼 𝑋|𝑌 = 6

𝔼Z[𝔼Q 𝑋|𝑌 ]



Self-reference trick
Problem.
 On an axis that is infinitely long on both ends, you start from 0.
 Each step:
  With probability 2/3, you walk length one right.
  With probability 1/3, you walk length one left.
 Let X be the number of steps you take to reach 1 for the first time. 
 What is 𝔼 𝑋 ?

0 1
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Self-reference trick

0 1

2/31/3

Let X be the number of steps you take to reach 1 from 0 for the first time. 

With probability 2/3, first step you get to 1,
 in that world,  𝑋 = 1.
With probability 1/3, first step you get to -1.
 in that world,  next, you need to first get from -1 ->0.  (Y steps.)
 then, you need to get from 0 -> 1.  (Z steps.)



Self-reference trick

0 1
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1/3

2/3 X=1
You’re at 1.

You’re at 0.

You’re at -1.

1/3

2/3

You’re at -2.

Y=1
You’re at 0. 

2/3
Z=1
You’re at 1. 
X = 1+Y+Z = 3

1/3

2/3 …

…

1/3 …



Self-reference trick
Let X be the number of steps 0 -> 1 for the first time. 
       Y be the number of steps -1 -> 0 for the first time (after you reach -1)
       Z be the number of steps 0 -> 1 for the first time (after you reach 0 again.)

We know 𝔼 𝑋 = -
.
⋅ 𝔼 𝑋	 &irst	step	0 → 1] + /

.
⋅ 𝔼 𝑋	 &irst	step	0 → −1]  

         (law of total expectation)

	 = -
. ⋅ 1 +

/
. ⋅ (1 + 𝔼 𝑌 + 𝑍	 &irst	step	0 → −1]).	

  	= -
. ⋅ 1 +

/
. ⋅ (1 + 𝔼 𝑌 	&irst	step	0 → −1] + 𝔼[𝑍	|	&irst	step	0 → −1]).	

         (linearity of expectation)

  	= -
. ⋅ 1 +

/
. ⋅ 1 + 𝔼 𝑋 + 𝔼 𝑋 . .
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Self-reference trick
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Self-reference trick
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Self-reference trick

Let X be the number of steps 0 -> 1 for the first time. 

2/31/3

We know 𝔼 𝑋 = -
. ⋅ 1 +

/
. ⋅ 1 + 2𝔼 𝑋 .

						=>		/
.
𝔼 𝑋 = 1.

Thus 𝔼 𝑋 = 3.

Crazy, right?  

It’s ok if you don’t feel like fully understand it. Try to revisit this example after we learn 
Markov Chains.



Envelope Paradox
Say I have two envelopes that contain $$$

One contains twice the money of the other one 
and I randomly swapped two. 

Strategy 1:   Pick one envelope, get 𝑥 dollars.
Strategy 2:   Switch to other one, 
 with ½ probability, get 𝑥/2 dollars.
 with ½ probability, get 2𝑥 dollars.

 In expectation,  M
N
⋅ _
N
+ M

N
⋅ 2𝑥 = 1.5	𝑥 

What’s 
wrong?



Monty Hall Problem
There are three doors. Behind one there is a car. Behind the other two 
are just goats.



Monty Hall Problem
There are three doors. Behind one there is a car. Behind the other two 
are just goats.
You choose one door (not opened). Then the host opens a door in the 
remaining two doors that has a goat behind it. 

Then the host asks you whether you’d like to switch.



Monty Hall Problem
There are three doors. Behind one there is a car. Behind the other two 
are just goats.
You choose one door (not opened). Then the host opens a door in the 
remaining two doors that has a goat behind it. 

The smart thing to do: Always switch!


