Lecture 16: Expectation

Expectation

Intuition (Lottery Example).
Say there are two lotteries:

1. 10% prob. of winning $\$ 1000$
2. $0.01 \$$ prob. of winning $\$ 2000$

Which one is more preferable?
$10 \% \cdot 1000=100 \quad$ >>. $0.01 \% \cdot 2000=0.2$

Expectation

Definition-1.
The expectation of a random variable X is defined as,

$$
\mathbb{E}[X]=\sum_{\omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Expectation

Definition-2.

The expectation of a random variable X is defined as,

$$
\mathbb{E}[X]=\sum_{a} \mathbb{P}[X=a] \cdot a .
$$

Expectation

Definition.

The expectation of a random variable X is defined as,

$$
\mathbb{E}[X]=\sum_{a} \mathbb{P}[X=a] \cdot a .
$$

$E[X]$ measures the "center of mass" of the distribution

Linearity of Expectation

Theorem (Linearity).
For two jointly distributed random variables X, Y,

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Note X, Y do not need to be independent.

Proof.

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{a, b} \mathbb{P}[X=a, Y=b] \cdot(a+b) \\
& =\sum_{a, b} \mathbb{P}[X=a, Y=b] \cdot a+\sum_{a, b} \mathbb{P}[X=a, Y=b] \cdot b \\
& =\sum_{a} \mathbb{P}[X=a] \cdot a+\sum_{b} \mathbb{P}[Y=b] \cdot b \\
& =\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

Linearity of Expectation (Example)

Example (The matching problem).

n cats each has a bowl with their name on it. However, when it comes time for dinner, each cat i goes to a random bowl p_{i} such that no two cats select the same bowl.

Suppose p is uniformly random over all permutations. Let X be the number of cats who got their own bowl.

What is $\mathbb{E}[X]$?

Linearity of Expectation (Example)

Lucky
Cookie
Tuanzi

Linearity of Expectation (Example)

Example (The matching problem).
Let's try the definition first.

$$
\mathbb{E}[X]=\sum_{a=0}^{n} \mathbb{P}[X=a] \cdot a
$$

where $\mathbb{P}[X=a]=\mathbb{P}[$ Exactly a cats got their bowl $]$

$$
=\frac{\#\{\text { permutation } p \text { with exactly } a \text { fixed points }\}}{n!}
$$

Too hard!

Linearity of Expectation (Example)

Example (The hat-check problem).
Let's try the linearity approach. Let

$$
X_{i}=\mathbf{1}[\text { the } i \text {-th cat got its own bowl }]
$$

be a $0 / 1$ indicator random variable.
(This is also called the method of indicators.)

We know in any possible world (any outcome),

$$
X=X_{1}+X_{2}+\cdots+X_{n} .
$$

Linearity of Expectation (Example)

Example (The hat-check problem).

Thus, by linearity, we know in expectation,

$$
\mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]
$$

By symmetry, we know

$$
\mathrm{E}\left[X_{1}\right]=\mathrm{E}\left[X_{2}\right]=\cdots=\mathrm{E}\left[X_{n}\right]
$$

What is $\mathrm{E}\left[X_{1}\right]$?

$$
\mathrm{E}\left[X_{1}\right]=\mathbb{P}\left[1^{\text {st }} \text { cat gets its bowl }\right]=1 / \mathfrak{k}
$$

Linearity of Expectation (Example)

Example (The hat-check problem).

Thus, by linearity, we know in expectation,

$$
\mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]=1 .
$$

By symmetry, we know

$$
\mathrm{E}\left[X_{1}\right]=\mathrm{E}\left[X_{2}\right]=\cdots=\mathrm{E}\left[X_{n}\right]=1 / n
$$

Conditional Expectation

Definition.

Conditioning on an event E , the distribution of $X \mid E$ becomes

$$
\mathbb{P}[X=a \mid E]=\frac{\mathbb{P}[X=a \wedge E]}{\mathbb{P}[E]} .
$$

and the conditional expectation,

$$
\begin{aligned}
\mathbb{E}[X \mid E] & =\sum_{a} \mathbb{P}[X=a \mid E] \cdot a \\
& =\sum_{\omega \in E} \mathbb{P}[\omega \mid E] \cdot a
\end{aligned}
$$

Intuitively, $\mathbb{E}\left[X \cdot \mathbf{1}_{E}\right]$ is the event E part of X.
$\mathbb{E}[X \mid E]$ is just take that part out, and multiply it by a factor of $\frac{1}{\mathbb{P}[E]}$ due to conditioning.

A sometimes useful formula.

$$
\mathbb{E}[X \mid E]=\frac{\mathbb{E}\left[X \cdot \mathbf{1}_{E}\right]}{\mathbb{P}[E]}
$$

where $\mathbf{1}_{E}$ is the indicator variable where $\mathbf{1}_{E}(\omega)=\mathbf{1}[\omega \in E]$.
Proof.

$$
\begin{aligned}
\mathbb{E}[X \mid E] & =\sum_{\omega \in E} \mathbb{P}[\omega \mid E] \cdot X(\omega) \\
& =\sum_{\omega \in \Omega} \mathbb{P}[\omega \mid E] \cdot X(\omega) \cdot \mathbf{1}_{E}(\omega) \\
& =\sum_{\omega \in \Omega} \frac{\mathbb{P}[\omega]}{\mathbb{P}[E]} \cdot X(\omega) \cdot \mathbf{1}_{E}(\omega) \\
& =\frac{1}{\mathbb{P}[E]} \cdot \sum_{\omega \in \Omega} \mathbb{P}[\omega] \cdot X(\omega) \cdot \mathbf{1}_{E}(\omega)=\frac{\mathbb{E}\left[X \cdot \mathbf{1}_{E}\right]}{\mathbb{P}[E]}
\end{aligned}
$$

Law of total expectation

Previously, we have learned law of total probability:
Theorem (Law of total probability).
For any event E and F,

$$
\mathbb{P}[F]=\mathbb{P}[F \mid E] \cdot \mathbb{P}[E]+\mathbb{P}[F \mid \neg E] \cdot \mathbb{P}[\neg E]
$$

Theorem (Law of total expectation).
For any event E and variable X,

$$
\mathbb{E}[X]=\mathbb{E}[X \mid E] \cdot \mathbb{P}[E]+\mathbb{E}[X \mid \neg E] \cdot \mathbb{P}[\neg E] .
$$

Law of total expectation

Theorem (Law of total expectation).
For any event E and variable X,

$$
\mathbb{E}[X]=\mathbb{E}[X \mid E] \cdot \mathbb{P}[E]+\mathbb{E}[X \mid \neg E] \cdot \mathbb{P}[\neg E]
$$

Proof

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{a} \mathbb{P}[X=a] \cdot a \\
& =\sum_{a}(\mathbb{P}[X=a \mid E] \cdot \mathbb{P}[E]+\mathbb{P}[X=a \mid \neg E] \cdot \mathbb{P}[\neg E]) \cdot a \\
& =\mathbb{P}[E] \cdot \sum_{a} \mathbb{P}[X=a \mid E] \cdot a+\mathbb{P}[\neg E] \cdot \sum_{a} \mathbb{P}[X=a \mid \neg E] \cdot a \\
& =\mathbb{P}[E] \cdot \mathbb{E}[X \mid E]+\mathbb{P}[\neg E] \cdot \mathbb{E}[X \mid \neg E]
\end{aligned}
$$

Multiplication Law of Independent Random Variables

Theorem.

For any two independent random variables X and Y,

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Analogue w/ Counting

Multiplication rule in expectation
For any two independent random variables X and Y,

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Multiplication rule in counting
If every one of A cases has B subcases, in total there are $A B$ subcases.

Law of iterated expectation

Lemma.

For any two random variables X and Y,

$$
\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right]=\mathbb{E}[X]
$$

What does this mean?

Law of iterated expectation

Lemma.

For any two random variables X and Y,

$$
\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right]=\mathbb{E}[X]
$$

$$
\mathbb{E}[X \mid Y=1]
$$

What does this mean?

Law of iterated expectation

Lemma.

For any two random variables X and Y,

$$
\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right]=\mathbb{E}[X] \quad \mathbb{E}[X \mid Y=6]
$$

$$
\mathbb{E}[X \mid Y=1]
$$

Self-reference trick

Problem.

On an axis that is infinitely long on both ends, you start from 0.
Each step:
With probability $2 / 3$, you walk length one right.
With probability $1 / 3$, you walk length one left.
Let X be the number of steps you take to reach 1 for the first time. What is $\mathbb{E}[X]$?

Self-reference trick

Let X be the number of steps you take to reach 1 from 0 for the first time.
With probability $2 / 3$, first step you get to 1 , in that world, $X=1$.
With probability $1 / 3$, first step you get to -1 . in that world, next, you need to first get from -1 ->0. (Y steps.) then, you need to get from $0->1$. (Z steps.)

Self-reference trick

Self-reference trick

Let X be the number of steps $0->1$ for the first time.
Y be the number of steps $-1->0$ for the first time (after you reach -1)
Z be the number of steps $0->1$ for the first time (after you reach 0 again.)
We know $\mathbb{E}[X]=\frac{2}{3} \cdot \mathbb{E}[X \mid$ first step $0 \rightarrow 1]+\frac{1}{3} \cdot \mathbb{E}[X \mid$ first step $0 \rightarrow-1]$
(law of total expectation)

$$
\begin{aligned}
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot(1+\mathbb{E}[Y+Z \mid \text { first step } 0 \rightarrow-1]) \\
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot(1+\mathbb{E}[Y \mid \text { first step } 0 \rightarrow-1]+\mathbb{E}[Z \mid \text { first step } 0 \rightarrow-1])
\end{aligned}
$$

$$
=\frac{2}{3} \cdot 1+\frac{1}{3} \cdot(1+\mathbb{E}[X]+\mathbb{E}[X]) . .
$$

Self-reference trick

Self-reference trick

Self-reference trick

Let X be the number of steps $0->1$ for the first time.
We know $\mathbb{E}[X]=\frac{2}{3} \cdot 1+\frac{1}{3} \cdot(1+2 \mathbb{E}[X])$.

$$
=>\frac{1}{3} \mathbb{E}[X]=1 .
$$

Thus $\mathbb{E}[X]=3$.

Crazy, right?

It's ok if you don't feel like fully understand it. Try to revisit this example after we learn Markov Chains.

Envelope Paradox

Say I have two envelopes that contain \$\$\$

One contains twice the money of the other one and I randomly swapped two.

Strategy 1: Pick one envelope, get x dollars.
Strategy 2: Switch to other one, with $1 / 2$ probability, get $x / 2$ dollars.
with $1 / 2$ probability, get $2 x$ dollars.
In expectation, $\frac{1}{2} \cdot \frac{x}{2}+\frac{1}{2} \cdot 2 x=1.5 x$

What's

wrong?

Monty Hall Problem

There are three doors. Behind one there is a car. Behind the other two are just goats.

Door A

Door B
Door C

Monty Hall Problem

There are three doors. Behind one there is a car. Behind the other two are just goats.
You choose one door (not opened). Then the host opens a door in the remaining two doors that has a goat behind it.

Then the host asks you whether you'd like to switch.

Monty Hall Problem

There are three doors. Behind one there is a car. Behind the other two are just goats.
You choose one door (not opened). Then the host opens a door in the remaining two doors that has a goat behind it.

The smart thing to do: Always switch!

