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1 Properties of the Greatest Common Divisor

(a) Since a | c and b | c, there exist k, j ∈ Z such that

c = ak = bj.

By Bezout’s identity, there exist x, y ∈ Z such that

ax+ by = gcd(a, b)

ax+ by = 1

cax+ cby = c

bjax+ akby = c

ab(jx+ ky) = c.

Then jx+ ky ∈ Z since j, k, x, y ∈ Z. By definition, ab | c.

(b) Since a | bc, there exists k ∈ Z such that bc = ak. Again by Bezout’s identity, there exist x, y ∈ Z such that

ax+ by = gcd(a, b)

ax+ by = 1

cax+ cby = c

acx+ bcy = c.

Then a | acx since acx = a(cx) and a | bc by assumption. Therefore, by Lemma 1 of Note 7, a | (acx+ bcy), so a | c.

(c) By induction on n.

Base case. n = 1. If gcd(a1, b) = 1, then gcd(a1, b) = 1, as desired.

Induction case.

Induction hypothesis. For some n ∈ N+, suppose that for any integers a1, . . . , an, b ∈ Z, if gcd(a1, b) = . . . =
gcd(an, b) = 1, then gcd(a1 · . . . · an, b) = 1.

Induction step. Consider any integers a1, . . . , an+1, b ∈ Z such that gcd(a1, b) = . . . = gcd(an, b) = gcd(an+1, b) =
1.

Let a = a1 ·. . .·an. By the induction hypothesis, gcd(a, b) = 1. By Bezout’s identity, there exist integers x, y, u, v ∈ Z
such that

ax+ by = gcd(a, b) = 1

an+1u+ bv = gcd(an+1, b) = 1.

If we scale the second equation by a, we get that

aan+1u+ abv = a.

Plugging this into the first equation gets us that

ax+ by = 1

(aan+1u+ abv)x+ by = 1

aan+1(ux) + b(avx+ y) = 1.

By Lemma 1 from Note 7, for any divisor such that d | (aan+1 and d | b, we have that d | (aan+1(ux)+ b(avx+ y).
That is, d | 1. The only divisor of 1 is 1, so any divisor of both aan+1 and b must be 1. That is,

gcd(aan+1, b) = gcd(a1 · . . . · an · an+1, b) = 1.

By the principle of mathematical induction, we have shown that for any integers a1, . . . , an, b ∈ Z, if gcd(a1, b) = . . . =
gcd(an, b) = 1, then gcd(a1 · . . . · an, b) = 1.



2 Existing Uniquely in the Chinese Remainder Theorem

(a) Let M = m1 · . . . ·mn be the product of all the moduli and for each i ∈ {1, . . . , n}, let Mi = M/mi be the product of
all the moduli except for mi.

Because gcd(mi,mj) = 1 for all i ̸= j we have by Question 1(c) that gcd(Mi,mi) = 1. Therefore Mi has an inverse
modulo mi, so we can define

si = (M−1
i mod mi) ·Mi.

We construct our solution as

x =

n∑
i=1

aisi.

Let us confirm that this yields a solution. For any i ∈ {1, . . . , n},

x ≡
n∑

i=1

aisi (mod mi)

≡ aisi +

n∑
j ̸=i

ajsi (mod mi)

≡ ai · (M−1
i mod mi) ·Mi +

∑
j ̸=i

aj · (M−1
j mod mj) ·Mj (mod mi)

≡ ai ·M−1
i ·Mi +

∑
j ̸=i

aj · (M−1
j mod mj) ·Mj (mod mi)

≡ ai · 1 +
∑
j ̸=i

aj · 0 (mod mi)

≡ ai.

So x solves the system of congruences.

(b) By induction on n, the number of congruences.

Base case. n = 1. Then we only have the linear congruence x ≡ a1 (mod m1), which has the solution x = a1 mod m1.
For any other solution y, if y ≡ a1 (mod m1), then x ≡ y (mod m1).

Induction case.

Induction hypothesis. For some n ∈ N+, suppose that any system of n linear congruences has a solution.

Induction step. Consider any system with n+ 1 linear congruences. Consider any two solutions x and y. By the
induction hypothesis, they are congruent modulo m1 · . . . ·mn = m′.

Therefore we have the system of equations

x ≡ y (mod m′)

x ≡ y (mod mn+1).

Therefore m′ | (x− y) and mn+1 | (x− y). By Question 1(c), gcd(m′,mn+1) = 1 and so by Question 1(a), we have
that m′mn+1 | (x− y). So

x ≡ y (mod m′mn+1).

3 The Totient Function

(a) First, we will show that r mod m ∈ Sm.

By the Division Algorithm, we know that r mod m ≤ m.

Since r ∈ Smn, we have that gcd(r,mn) = 1 by definition of Smn.

We will prove gcd(r,m) = 1 by contradiction as follows: Suppose gcd(r,m) = a for some a > 1. Then we know that
a | r and a | m, but this implies that a | mn as well, which contradicts the fact that gcd(r,mn) = 1.

Furthermore, we know that gcd(r,m) = gcd(m, r mod m) (proven in Discussion 3A). Therefore, gcd(r mod m,m) = 1.

Since r mod m ≤ m and gcd(r mod m,m) = 1, r ∈ Sm by definition of Sm.



We can apply an identical argument to conclude that r mod n ∈ Sn.

Since r mod m ∈ Sm and r mod n ∈ Sn, then f(r) ∈ Sm × Sn.

(b) Suppose there exist two numbers a, b ∈ Smn where f(a) = f(b) = (c, d).

This means that both a and b satisfy the following system of modular congruences:

x ≡ c (mod m)

x ≡ d (mod n)

However, the Chinese remainder theorem states that such a system of modular equivalences will have a unique solution
modulo mn, so the fact that both a and b are between 0 and mn implies that a = b.

(c) For arbitrary element (c, d) ∈ Sm × Sn, we can construct the following system of congruences:

r ≡ c (mod m)

r ≡ d (mod n)

By the Chinese Remainder Theorem, there exists some r that satisfies both congruences.

Furthermore, gcd(r,m) = gcd(m, r mod m) = gcd(r, c) = 1, and one can apply an identical argument to show that
gcd(r, n) = 1.

Since gcd(r,m) = 1 and gcd(r, n) = 1, it must hold that gcd(r,mn) = 1 and so r ∈ Smn. Thus for any (c, d) ∈ Sm×Sn,
there exists some r ∈ Smn such that f(r) = (c, d), and so f is a surjection.

(d) Since f is well-defined, is an injection, and is a surjection, it is a bijection from Smn to Sm × Sn. Therefore, |Smn| =
|Sm × Sn|, and since both Sm and Sn are finite, |Sm × Sn| = |Sm||Sn|. Therefore,

φ(mn) = |Smn| = |Sm||Sn| = φ(m)φ(n).

4 Generalizing the Chinese Remainder Theorem

(a) If there is a solution to the system, then there exist integers x, k, ℓ such that x = a + km = b + ℓn. In other words,
a− b = km− ℓn. But since d | m and d | n, d | km− ℓn, proving the result.

(b) If d | (a − b), then we can construct a solution by adapting the usual Chinese Remainder Theorem. By Bezout’s
lemma, we can write d = fm + gn. Then we claim x = bfm+agn

d solves both equivalences. To see this, note that by

rearrangement fm
d = 1− gn

d .

x ≡ b
fm

d
+ a

gn

d
(mod m)

x ≡ b
fm

d
+ a− a

fm

d
(mod m)

x ≡ a− (a− b)
fm

d
(mod m)

Since d | (a − b), we can write kd = (a − b) for integer k. Thus, x ≡ a − kfm ≡ a (mod m). Symmetrically one can
show that x ≡ b (mod n).

(c) Since c is a multiple of a and b, we have c ≥ ℓ. By the division algorithm, there exist integers q, r such that c = qℓ+ r
where 0 ≤ r < ℓ. Now, r = c− qℓ and since c, ℓ are multiples of a and b we have a | r and b | r. If r ̸= 0, then r would
be a smaller common multiple, which is a contradiction. Therefore, and r = 0 and c = qℓ, so ℓ | c.

(d) Consider two solutions x, y to the system. Since x ≡ y (mod m) and x ≡ y (mod n), m | (x − y) and n | (x − y). By
the previous part, we have that lcm(m,n) | (x − y). Therefore, x − y ≡ 0 (mod lcm(m,n)) or that they are equal up
to this modulo. Therefore, solutions are unique up to this modulo.

(e) We can calculate the solution for two congruences as follows: d = gcd(m1,m2). Then, a unique solution modulo
lcm(m1,m2) exists as long as m1 ≡ m2 (mod d). To construct the unique solution, we write the linear combination
using Bezout’s. To construct it, one can just compute, for each i from 1 to n

f ≡
(m2

d

)−1

(mod m1/d)

g ≡
(m1

d

)−1

(mod m2/d)



Then, we can construct the solution as in (b). Now, we can replace these two congruences with a new congruence
modulo lcm(m1,m2) and repeat until there is only one congruence left.

(f) gcd(2, 4) = 2 and lcm(2, 4) = 4. Here we can easily write 2 = (1)(2) + (0)(4), yielding f = 1 and g = 0. Thus, our
intermediate x ≡ 2·1·2+0·0·4

2 ≡ 2 (mod 4).

Next, we will combine the bottom two recurrences. Here, the usual CRT suffices, finding 1 = (7)(13) + (−5)(18)
with Euclid’s algorithm. Since 13 · 18 = 234 this yields x ≡ (4)(7)(13) + (2)(−5)(18) ≡ 364 − 180 ≡ 184 (mod 234).
Finally, gcd(4, 234) = 2 and lcm(4, 234) = 2 · 234 = 468, and again we can write 2 and 117 with Bezout’s as 1 =
(−58)(2) + (1)(117) so 2 = (−58)(4) + (1)(234). Therefore

x ≡ (184)(−58)(4) + (2)(1)(234)

2
≡ 418 (mod 468)

5 RSA Prime Counts

(a) We pick d ≡ e−1 (mod p− 1). Then D(y) = yd mod p. Now, D(E(x)) = xed mod p. Since ed ≡ 1 (mod p− 1), then
there exists integer such that ed = 1 + k(p− 1). Then

D(E(x)) ≡ x ·
(
xp−1

)k ≡ x · 1k ≡ 1 (mod p)

where the second-to-last step used FLT.

(b) The public key will just be the prime N = p, so we can calculate p− 1 easily and compute d to decrypt messages.

(c) We pick d ≡ e−1 (mod (p − 1)(q − 1)(r − 1)). Then D(y) = yd mod N . Now, we will show that encryption and
decryption recovers the original message, e.g. D(E(x)) = x. We find D(E(x)) = xed mod N . Since ed ≡ 1 (mod (p−
1)(q − 1)(r − 1)), then there exists integer such that ed = 1 + k(p− 1)(q − 1)(r − 1). Then

D(E(x)) ≡ x ·
(
xp−1

)k(q−1)(r−1) ≡ x · 1k ≡ x (mod p)

Similarly, D(E(x)) ≡ x (mod q) and D(E(x)) ≡ x (mod r). By the Chinese Remainder Theorem, there is a unique
solution for x modulo pqr (distinct primes are coprime). One can see that if D(E(x)) ≡ x (mod pqr) then clearly
D(E(x)) ≡ x (mod p) and for q, r as well, so this is the solution we get. Thus, the encryption scheme works.

(d) Similar to regular RSA, one would need to somehow factor N = pqr into p, q, r to get (p− 1), (q − 1), (r − 1) in order
to then find the modulo to invert e. The previous attack required no factoring, just a subtraction, which is easy.

6 Euler’s Theorem

(a) All the integers between 1 and p−1 inclusive are coprime to a prime p, so φ(p) = p−1. The theorem thus asks whether
ap−1 ≡ 1 for a coprime to p (i.e. a ̸≡ 0 (mod p)). This is exactly Fermat’s Last Theorem, so that is enough to prove
this case.

(b) By Question 1(c), since gcd(a,m) = 1 and gcd(x,m) = 1, we have that gcd(ax,m) = 1. By the Euclidean algorithm,
gcd(ax mod m,m) = 1, so ax mod m ∈ Sm.

(c) We must show that f is an injection and that f is a bijection.

f is an injection. For any x1, x2 ∈ Sm, suppose that f(x1) = f(x2). Then ax1 mod m = ax2 mod m, so ax1 ≡ ax2

(mod m). Since gcd(a,m) = 1, a−1 exists modulo m and hence x1 ≡ x2 (mod m). That is, m | (x1 − x2). In
particular, x1 − xk = mk for some k ∈ Z. However, since 0 ≤ x1, x2 < m, we have that −m < x1 − x2 < m. So we
cannot have that k ≥ 1 nor can we have that k ≤ −1, so it must be that k = 0 and hence x1 = x2.

f is a surjection. For any y ∈ Sm, consider the x = (a−1 mod m)y. Then f(x) = a(a−1 mod m)y mod m = y.
Moreover, since a−1 has an inverse modulo m, we know that gcd(a−1 mod m,m) = 1. Then, since gcd(y,m) = 1,
we have that gcd((a−1 mod m)y,m) = 1, and so x ∈ Sm.

(d) Since f is a bijection, the set {ax (mod m) : x ∈ Sm} = Sm. Now, consider multiplying all of these elements. On the
left side, we get

∏
x∈Sm

ax = a|Sm|∏
x∈Sm

x = aφ(m)
∏

x∈Sm
. On the right side, we get

∏
x∈Sm

x. Setting these equal,
we get

aφ(m)

( ∏
x∈Sm

x

)
≡
∏

x∈Sm

x (mod m)

aφ(m) ≡ 1 (mod m)



where in the last step, we were able to take inverses of each element in the product since they were in Sm and thus
coprime to m.
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