Homework 3

CS 70, Summer 2024

Due by Friday, July $12^{\text {th }}$ at 11:59 PM

This content is protected and may not be shared, uploaded, or distributed.

1 Properties of the Greatest Common Divisor

(a) Since $a \mid c$ and $b \mid c$, there exist $k, j \in \mathbb{Z}$ such that

$$
c=a k=b j
$$

By Bezout's identity, there exist $x, y \in \mathbb{Z}$ such that

$$
\begin{aligned}
a x+b y & =\operatorname{gcd}(a, b) \\
a x+b y & =1 \\
c a x+c b y & =c \\
b j a x+a k b y & =c \\
a b(j x+k y) & =c .
\end{aligned}
$$

Then $j x+k y \in \mathbb{Z}$ since $j, k, x, y \in \mathbb{Z}$. By definition, $a b \mid c$.
(b) Since $a \mid b c$, there exists $k \in \mathbb{Z}$ such that $b c=a k$. Again by Bezout's identity, there exist $x, y \in \mathbb{Z}$ such that

$$
\begin{aligned}
a x+b y & =\operatorname{gcd}(a, b) \\
a x+b y & =1 \\
c a x+c b y & =c \\
a c x+b c y & =c .
\end{aligned}
$$

Then $a \mid a c x$ since $a c x=a(c x)$ and $a \mid b c$ by assumption. Therefore, by Lemma 1 of Note $7, a \mid(a c x+b c y)$, so $a \mid c$.
(c) By induction on n.

Base case. $n=1$. If $\operatorname{gcd}\left(a_{1}, b\right)=1$, then $\operatorname{gcd}\left(a_{1}, b\right)=1$, as desired.

Induction case.

Induction hypothesis. For some $n \in \mathbb{N}^{+}$, suppose that for any integers $a_{1}, \ldots, a_{n}, b \in \mathbb{Z}$, if $\operatorname{gcd}\left(a_{1}, b\right)=\ldots=$ $\operatorname{gcd}\left(a_{n}, b\right)=1$, then $\operatorname{gcd}\left(a_{1} \cdot \ldots \cdot a_{n}, b\right)=1$.
Induction step. Consider any integers $a_{1}, \ldots, a_{n+1}, b \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{1}, b\right)=\ldots=\operatorname{gcd}\left(a_{n}, b\right)=\operatorname{gcd}\left(a_{n+1}, b\right)=$ 1.

Let $a=a_{1} \cdot \ldots \cdot a_{n}$. By the induction hypothesis, $\operatorname{gcd}(a, b)=1$. By Bezout's identity, there exist integers $x, y, u, v \in \mathbb{Z}$ such that

$$
\begin{aligned}
a x+b y & =\operatorname{gcd}(a, b)=1 \\
a_{n+1} u+b v & =\operatorname{gcd}\left(a_{n+1}, b\right)=1
\end{aligned}
$$

If we scale the second equation by a, we get that

$$
a a_{n+1} u+a b v=a
$$

Plugging this into the first equation gets us that

$$
\begin{aligned}
a x+b y & =1 \\
\left(a a_{n+1} u+a b v\right) x+b y & =1 \\
a a_{n+1}(u x)+b(a v x+y) & =1 .
\end{aligned}
$$

By Lemma 1 from Note 7, for any divisor such that $d \mid\left(a a_{n+1}\right.$ and $d \mid b$, we have that $d \mid\left(a a_{n+1}(u x)+b(a v x+y)\right.$. That is, $d \mid 1$. The only divisor of 1 is 1 , so any divisor of both $a a_{n+1}$ and b must be 1 . That is,

$$
\operatorname{gcd}\left(a a_{n+1}, b\right)=\operatorname{gcd}\left(a_{1} \cdot \ldots \cdot a_{n} \cdot a_{n+1}, b\right)=1
$$

By the principle of mathematical induction, we have shown that for any integers $a_{1}, \ldots, a_{n}, b \in \mathbb{Z}$, if $\operatorname{gcd}\left(a_{1}, b\right)=\ldots=$ $\operatorname{gcd}\left(a_{n}, b\right)=1$, then $\operatorname{gcd}\left(a_{1} \cdot \ldots \cdot a_{n}, b\right)=1$.

2 Existing Uniquely in the Chinese Remainder Theorem

(a) Let $M=m_{1} \cdot \ldots \cdot m_{n}$ be the product of all the moduli and for each $i \in\{1, \ldots, n\}$, let $M_{i}=M / m_{i}$ be the product of all the moduli except for m_{i}.
Because $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$ we have by Question $1(\mathbf{c})$ that $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$. Therefore M_{i} has an inverse modulo m_{i}, so we can define

$$
s_{i}=\left(M_{i}^{-1} \bmod m_{i}\right) \cdot M_{i} .
$$

We construct our solution as

$$
x=\sum_{i=1}^{n} a_{i} s_{i}
$$

Let us confirm that this yields a solution. For any $i \in\{1, \ldots, n\}$,

$$
\begin{array}{rlr}
x & \equiv \sum_{i=1}^{n} a_{i} s_{i} & \left(\bmod m_{i}\right) \\
& \equiv a_{i} s_{i}+\sum_{j \neq i}^{n} a_{j} s_{i} & \left(\bmod m_{i}\right) \\
& \equiv a_{i} \cdot\left(M_{i}^{-1} \bmod m_{i}\right) \cdot M_{i}+\sum_{j \neq i} a_{j} \cdot\left(M_{j}^{-1} \bmod m_{j}\right) \cdot M_{j} & \left(\bmod m_{i}\right) \\
& \equiv a_{i} \cdot M_{i}^{-1} \cdot M_{i}+\sum_{j \neq i} a_{j} \cdot\left(M_{j}^{-1} \bmod m_{j}\right) \cdot M_{j} & \left(\bmod m_{i}\right) \\
& \equiv a_{i} \cdot 1+\sum_{j \neq i} a_{j} \cdot 0 & \left(\bmod m_{i}\right) \\
& \equiv a_{i}
\end{array}
$$

So x solves the system of congruences.
(b) By induction on n, the number of congruences.

Base case. $n=1$. Then we only have the linear congruence $x \equiv a_{1}\left(\bmod m_{1}\right)$, which has the solution $x=a_{1} \bmod m_{1}$. For any other solution y, if $y \equiv a_{1}\left(\bmod m_{1}\right)$, then $x \equiv y\left(\bmod m_{1}\right)$.

Induction case.

Induction hypothesis. For some $n \in \mathbb{N}^{+}$, suppose that any system of n linear congruences has a solution.
Induction step. Consider any system with $n+1$ linear congruences. Consider any two solutions x and y. By the induction hypothesis, they are congruent modulo $m_{1} \cdot \ldots \cdot m_{n}=m^{\prime}$.

Therefore we have the system of equations

$$
\begin{aligned}
& x \equiv y \quad\left(\bmod m^{\prime}\right) \\
& x \equiv y \quad\left(\bmod m_{n+1}\right)
\end{aligned}
$$

Therefore $m^{\prime} \mid(x-y)$ and $m_{n+1} \mid(x-y)$. By Question $1(\mathbf{c}), \operatorname{gcd}\left(m^{\prime}, m_{n+1}\right)=1$ and so by Question 1 (a), we have that $m^{\prime} m_{n+1} \mid(x-y)$. So

$$
x \equiv y \quad\left(\bmod m^{\prime} m_{n+1}\right)
$$

3 The Totient Function

(a) First, we will show that $r \bmod m \in S_{m}$.

By the Division Algorithm, we know that $r \bmod m \leq m$.
Since $r \in S_{m n}$, we have that $\operatorname{gcd}(r, m n)=1$ by definition of $S_{m n}$.
We will prove $\operatorname{gcd}(r, m)=1$ by contradiction as follows: Suppose $\operatorname{gcd}(r, m)=a$ for some $a>1$. Then we know that $a \mid r$ and $a \mid m$, but this implies that $a \mid m n$ as well, which contradicts the fact that $\operatorname{gcd}(r, m n)=1$.
Furthermore, we know that $\operatorname{gcd}(r, m)=\operatorname{gcd}(m, r \bmod m)($ proven in Discussion 3A). Therefore, $\operatorname{gcd}(r \bmod m, m)=1$.
Since $r \bmod m \leq m$ and $\operatorname{gcd}(r \bmod m, m)=1, r \in S_{m}$ by definition of S_{m}.

We can apply an identical argument to conclude that $r \bmod n \in S_{n}$.
Since $r \bmod m \in S_{m}$ and $r \bmod n \in S_{n}$, then $f(r) \in S_{m} \times S_{n}$.
(b) Suppose there exist two numbers $a, b \in S_{m n}$ where $f(a)=f(b)=(c, d)$.

This means that both a and b satisfy the following system of modular congruences:

$$
\begin{array}{ll}
x \equiv c & (\bmod m) \\
x \equiv d & (\bmod n)
\end{array}
$$

However, the Chinese remainder theorem states that such a system of modular equivalences will have a unique solution modulo $m n$, so the fact that both a and b are between 0 and $m n$ implies that $a=b$.
(c) For arbitrary element $(c, d) \in S_{m} \times S_{n}$, we can construct the following system of congruences:

$$
\begin{array}{ll}
r \equiv c & (\bmod m) \\
r \equiv d & (\bmod n)
\end{array}
$$

By the Chinese Remainder Theorem, there exists some r that satisfies both congruences.
Furthermore, $\operatorname{gcd}(r, m)=\operatorname{gcd}(m, r \bmod m)=\operatorname{gcd}(r, c)=1$, and one can apply an identical argument to show that $\operatorname{gcd}(r, n)=1$.

Since $\operatorname{gcd}(r, m)=1$ and $\operatorname{gcd}(r, n)=1$, it must hold that $\operatorname{gcd}(r, m n)=1$ and so $r \in S_{m n}$. Thus for any $(c, d) \in S_{m} \times S_{n}$, there exists some $r \in S_{m n}$ such that $f(r)=(c, d)$, and so f is a surjection.
(d) Since f is well-defined, is an injection, and is a surjection, it is a bijection from $S_{m n}$ to $S_{m} \times S_{n}$. Therefore, $\left|S_{m n}\right|=$ $\left|S_{m} \times S_{n}\right|$, and since both S_{m} and S_{n} are finite, $\left|S_{m} \times S_{n}\right|=\left|S_{m}\right|\left|S_{n}\right|$. Therefore,

$$
\varphi(m n)=\left|S_{m n}\right|=\left|S_{m}\right|\left|S_{n}\right|=\varphi(m) \varphi(n)
$$

4 Generalizing the Chinese Remainder Theorem

(a) If there is a solution to the system, then there exist integers x, k, ℓ such that $x=a+k m=b+\ell n$. In other words, $a-b=k m-\ell n$. But since $d \mid m$ and $d|n, d| k m-\ell n$, proving the result.
(b) If $d \mid(a-b)$, then we can construct a solution by adapting the usual Chinese Remainder Theorem. By Bezout's lemma, we can write $d=f m+g n$. Then we claim $x=\frac{b f m+a g n}{d}$ solves both equivalences. To see this, note that by rearrangement $\frac{f m}{d}=1-\frac{g n}{d}$.

$$
\begin{aligned}
x & \equiv b \frac{f m}{d}+a \frac{g n}{d} \quad(\bmod m) \\
x & \equiv b \frac{f m}{d}+a-a \frac{f m}{d} \quad(\bmod m) \\
x & \equiv a-(a-b) \frac{f m}{d} \quad(\bmod m)
\end{aligned}
$$

Since $d \mid(a-b)$, we can write $k d=(a-b)$ for integer k. Thus, $x \equiv a-k f m \equiv a(\bmod m)$. Symmetrically one can show that $x \equiv b(\bmod n)$.
(c) Since c is a multiple of a and b, we have $c \geq \ell$. By the division algorithm, there exist integers q, r such that $c=q \ell+r$ where $0 \leq r<\ell$. Now, $r=c-q \ell$ and since c, ℓ are multiples of a and b we have $a \mid r$ and $b \mid r$. If $r \neq 0$, then r would be a smaller common multiple, which is a contradiction. Therefore, and $r=0$ and $c=q \ell$, so $\ell \mid c$.
(d) Consider two solutions x, y to the system. Since $x \equiv y(\bmod m)$ and $x \equiv y(\bmod n), m \mid(x-y)$ and $n \mid(x-y)$. By the previous part, we have that $\operatorname{lcm}(m, n) \mid(x-y)$. Therefore, $x-y \equiv 0(\bmod \operatorname{lcm}(m, n))$ or that they are equal up to this modulo. Therefore, solutions are unique up to this modulo.
(e) We can calculate the solution for two congruences as follows: $d=\operatorname{gcd}\left(m_{1}, m_{2}\right)$. Then, a unique solution modulo $\operatorname{lcm}\left(m_{1}, m_{2}\right)$ exists as long as $m_{1} \equiv m_{2}(\bmod d)$. To construct the unique solution, we write the linear combination using Bezout's. To construct it, one can just compute, for each i from 1 to n

$$
\begin{array}{ll}
f \equiv\left(\frac{m_{2}}{d}\right)^{-1} & \left(\bmod m_{1} / d\right) \\
g \equiv\left(\frac{m_{1}}{d}\right)^{-1} & \left(\bmod m_{2} / d\right)
\end{array}
$$

Then, we can construct the solution as in (b). Now, we can replace these two congruences with a new congruence modulo $\operatorname{lcm}\left(m_{1}, m_{2}\right)$ and repeat until there is only one congruence left.
(f) $\operatorname{gcd}(2,4)=2$ and $\operatorname{lcm}(2,4)=4$. Here we can easily write $2=(1)(2)+(0)(4)$, yielding $f=1$ and $g=0$. Thus, our intermediate $x \equiv \frac{2 \cdot 1 \cdot 2+0 \cdot 0 \cdot 4}{2} \equiv 2(\bmod 4)$.
Next, we will combine the bottom two recurrences. Here, the usual CRT suffices, finding $1=(7)(13)+(-5)(18)$ with Euclid's algorithm. Since $13 \cdot 18=234$ this yields $x \equiv(4)(7)(13)+(2)(-5)(18) \equiv 364-180 \equiv 184(\bmod 234)$. Finally, $\operatorname{gcd}(4,234)=2$ and $\operatorname{lcm}(4,234)=2 \cdot 234=468$, and again we can write 2 and 117 with Bezout's as $1=$ $(-58)(2)+(1)(117)$ so $2=(-58)(4)+(1)(234)$. Therefore

$$
x \equiv \frac{(184)(-58)(4)+(2)(1)(234)}{2} \equiv 418 \quad(\bmod 468)
$$

5 RSA Prime Counts

(a) We pick $d \equiv e^{-1}(\bmod p-1)$. Then $D(y)=y^{d} \bmod p$. Now, $D(E(x))=x^{e d} \bmod p$. Since $e d \equiv 1(\bmod p-1)$, then there exists integer such that $e d=1+k(p-1)$. Then

$$
D(E(x)) \equiv x \cdot\left(x^{p-1}\right)^{k} \equiv x \cdot 1^{k} \equiv 1 \quad(\bmod p)
$$

where the second-to-last step used FLT.
(b) The public key will just be the prime $N=p$, so we can calculate $p-1$ easily and compute d to decrypt messages.
(c) We pick $d \equiv e^{-1}(\bmod (p-1)(q-1)(r-1))$. Then $D(y)=y^{d} \bmod N$. Now, we will show that encryption and decryption recovers the original message, e.g. $D(E(x))=x$. We find $D(E(x))=x^{e d} \bmod N$. Since $e d \equiv 1(\bmod (p-$ $1)(q-1)(r-1))$, then there exists integer such that $e d=1+k(p-1)(q-1)(r-1)$. Then

$$
D(E(x)) \equiv x \cdot\left(x^{p-1}\right)^{k(q-1)(r-1)} \equiv x \cdot 1^{k} \equiv x \quad(\bmod p)
$$

Similarly, $D(E(x)) \equiv x(\bmod q)$ and $D(E(x)) \equiv x(\bmod r)$. By the Chinese Remainder Theorem, there is a unique solution for x modulo $p q r$ (distinct primes are coprime). One can see that if $D(E(x)) \equiv x$ (mod pqr) then clearly $D(E(x)) \equiv x(\bmod p)$ and for q, r as well, so this is the solution we get. Thus, the encryption scheme works.
(d) Similar to regular RSA, one would need to somehow factor $N=p q r$ into p, q, r to get $(p-1),(q-1),(r-1)$ in order to then find the modulo to invert e. The previous attack required no factoring, just a subtraction, which is easy.

6 Euler's Theorem

(a) All the integers between 1 and $p-1$ inclusive are coprime to a prime p, so $\varphi(p)=p-1$. The theorem thus asks whether $a^{p-1} \equiv 1$ for a coprime to $p($ i.e. $a \not \equiv 0(\bmod p))$. This is exactly Fermat's Last Theorem, so that is enough to prove this case.
(b) By Question $1(\mathbf{c})$, since $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(x, m)=1$, we have that $\operatorname{gcd}(a x, m)=1$. By the Euclidean algorithm, $\operatorname{gcd}(a x \bmod m, m)=1$, so $a x \bmod m \in S_{m}$.
(c) We must show that f is an injection and that f is a bijection.
f is an injection. For any $x_{1}, x_{2} \in S_{m}$, suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $a x_{1} \bmod m=a x_{2} \bmod m$, so $a x_{1} \equiv a x_{2}$ $(\bmod m)$. Since $\operatorname{gcd}(a, m)=1, a^{-1}$ exists modulo m and hence $x_{1} \equiv x_{2}(\bmod m)$. That is, $m \mid\left(x_{1}-x_{2}\right)$. In particular, $x_{1}-x_{k}=m k$ for some $k \in \mathbb{Z}$. However, since $0 \leq x_{1}, x_{2}<m$, we have that $-m<x_{1}-x_{2}<m$. So we cannot have that $k \geq 1$ nor can we have that $k \leq-1$, so it must be that $k=0$ and hence $x_{1}=x_{2}$.
f is a surjection. For any $y \in S_{m}$, consider the $x=\left(a^{-1} \bmod m\right) y$. Then $f(x)=a\left(a^{-1} \bmod m\right) y \bmod m=y$. Moreover, since a^{-1} has an inverse modulo m, we know that $\operatorname{gcd}\left(a^{-1} \bmod m, m\right)=1$. Then, since $\operatorname{gcd}(y, m)=1$, we have that $\operatorname{gcd}\left(\left(a^{-1} \bmod m\right) y, m\right)=1$, and so $x \in S_{m}$.
(d) Since f is a bijection, the set $\left\{a x(\bmod m): x \in S_{m}\right\}=S_{m}$. Now, consider multiplying all of these elements. On the left side, we get $\prod_{x \in S_{m}} a x=a^{\left|S_{m}\right|} \prod_{x \in S_{m}} x=a^{\varphi(m)} \prod_{x \in S_{m}}$. On the right side, we get $\prod_{x \in S_{m}} x$. Setting these equal, we get

$$
\begin{aligned}
a^{\varphi(m)}\left(\prod_{x \in S_{m}} x\right) & \equiv \prod_{x \in S_{m}} x \quad(\bmod m) \\
a^{\varphi(m)} & \equiv 1 \quad(\bmod m)
\end{aligned}
$$

where in the last step, we were able to take inverses of each element in the product since they were in S_{m} and thus coprime to m.

