
Homework 2

CS 70, Summer 2024

Due by Friday, July 5th at 11:59 PM

This content is protected and may not be shared, uploaded, or distributed.

1 Stable Matching Proofs

(a) We prove the statement by contradiction. Suppose that the propose-and-reject and the flipped propose-and-reject
algorithm output the same stable matching S, and that there exists some other stable matching S ̸= S′.

Then there must exist some candidate C and two jobs J ̸= J ′ such that (C, J) ∈ S but (C, J ′) ∈ S′. There are two
possible cases.

(1) C prefers J ′ to J . This yields a contradiction, since the S is produced by the flipped propose-and-reject algorithm
and is therefore candidate-optimal. That is, J is the most preferred job which C could be ranked with in any
stable matching.

(i) C prefers J to J ′. This yields a contradiction, since S is produced by the propose-and-reject algorithm and is
therefore candidate-pessimal. That is, J is the least preferred job which C could be ranked with in any stable
matching.

In either case, we get a contradiction. Therefore our assumption that the two stable matchings S and S′ were different
must have been incorrect.

Therefore we have shown that there is only one stable matching.

(b) We disprove the statement. The propose-and-reject algorithm produces a job-optimal matching, and any job J only
proposes to candidates which they like at least as much as the final candidate with which they are matched.

If there exists a stable matching which is not job-optimal, then there would be some candidate C matched with a
job which does not propose to them in the propose-and-reject algorithm. We can demonstrate this with the following
preferences lists. For any n ≥ 2, let J1, . . . , Jn be the jobs and C1, . . . , Cn be the candidates.

The candidates’ preferences lists are as follows.

Candidates Jobs
C1 J1 ≻ J2 ≻ J3 ≻ . . . ≻ Jn
C2 J2 ≻ J1 ≻ J2 ≻ . . . ≻ Jn
C3 J3 ≻ J1 ≻ J2 ≻ . . . ≻ Jn
...

...
Cn Jn ≻ J1 ≻ J2 ≻ . . . ≻ Jn−1

And the jobs’ preferences lists are as follows.

Jobs Candidates
J1 Cn ≻ Cn−1 ≻ Cn−2 ≻ . . . ≻ C1

J2 Cn−1 ≻ Cn ≻ Cn−1 ≻ . . . ≻ C1

J3 Cn−2 ≻ Cn ≻ Cn−1 ≻ . . . ≻ C1

...
...

Jn C1 ≻ Cn ≻ Cn−1 ≻ . . . ≻ C2

With these preferences lists, with the propose-and-reject algorithm, the jobs all make offers to distinct candidates on
the first day; every candidate gets an offer and thus the algorithm terminates with the matching

{(J1, Cn), (J2, Cn−1), . . . , (Jn, C1)}.

However, with the flipped propose-and-reject algorithm, the candidates all make offers to distinct jobs on the first day;
every job gets an offer and thus the algorithm terminates with the matching

{(J1, C1), (J2, C2), . . . , (Jn, Cn)}.

This shows that for every stable matching with n ≥ 2 jobs and candidates, there is a stable matching where jobs are
matched with candidates to whom they never made an offer in the propose-and-reject algorithm.

(c) We disprove the statement. The flipped propose-and-reject algorithm will yield a candidate-optimal matching in which
every candidate is matched with their optimal job. However, a single job cannot be matched with two candidates, so
any two candidates must have different optimal jobs.

2 Best-Case and Worst-Case Scenarios

(a) We disprove the statement by contradiction. Suppose for contradiction that every job gets their matched with their
least preferred candidate. For this to occur, every job must have a different least preferred candidate; if two jobs had
the same least preferred candidate, only one could be matched with that candidate. The other would get a candidate
other than their least preferred, which contradicts our assumption.

Let J1 and J2 be two jobs with least preferred candidates C1 and C2. Then the algorithm assigns (J1, C1) and (J2, C2).
But then we can simply swap the candidates and keep the matching stable: (J1, C2) and (J2, C2). This cannot form any
rogue couples since J1 prefers C2 to C1 and J2 prefers C1 to C2. This contradicts the fact that the propose-and-reject
algorithm is job-optimal. So such a matching cannot have happened.

Numerous other approaches work as well, most using some form of contradiction. Consider the following, slightly
less formal proof which disproves the claim by finding a contradiction with the fact that there is always at least one
candidate who only receives one offer.

Suppose for contradiction that in the propose-and-reject algorithm, each job is matched with their least preferred
candidate.

For this to occur, it must be that every candidate received an offer from every single job. To prove this, suppose
for contradiction that some candidate C never received an offer from job J . Then some candidate C ′ which job J
prefers to C must have received an offer from J and never rejected it. But then J must have been matched with
C ′, which they prefer to C. This contradicts our assumption that every job is matched with their least preferred
candidate.

So every candidate receives an offer from every single job. However, we know from Discussion 2A, Question 3(c)
that in any execution of the propose-and-reject algorithm, there is at least one candidate who only receives a single
offer. But we have shown that every candidate receives an offer from all n ≥ 2 jobs. This is a contradiction, so our
assumption that every job was matched with their least preferred candidate must be incorrect. So no such set of
preferences can exist.

(b) We prove the statement by example. Let J1, . . . Jn be the jobs and let C1, . . . , Cn be the candidates.

Consider the following preference lists for the jobs.

Jobs Candidates
J1 C1 ≻ C2 ≻ C3 ≻ . . . ≻ Cn

J2 C2 ≻ C1 ≻ C2 ≻ . . . ≻ Cn

J3 C3 ≻ C1 ≻ C2 ≻ . . . ≻ Cn

...
...

Jn Cn ≻ C1 ≻ C2 ≻ . . . ≻ Cn−1

And consider the following preference lists for the candidates.

Candidates Jobs
C1 Jn ≻ . . . ≻ J3 ≻ J2 ≻ J1
C2 Jn ≻ . . . ≻ J3 ≻ J1 ≻ J2
C3 Jn ≻ . . . ≻ J2 ≻ J1 ≻ J3
...

...
Cn Jn−1 ≻ . . . ≻ J3 ≻ J1 ≻ Jn

Since every job makes an offer to a different candidate, every candidate receives an offer and the algorithm terminates
on the first day with the following stable matching:

{(J1, C1), (J2, C2), . . . , (Jn, Cn)}.

This matches each candidate with their least preferred job.

(c) We prove the statement by contradiction. Suppose that job J is candidate C’s most preferred job and candidate C is
job J ’s most preferred candidate, but they are not matched in some stable matching S.

Therefore there must be some job J ′ ̸= J and some candidate C ′ ̸= C such that (J,C ′), (J ′, C) ∈ S. However, J prefers
C over C ′ since C is J ’s most preferred candidate. Likewise, C prefers J over J ′, since J is C’s most preferred job.
Therefore (J,C) is a rogue couple in S. This contradicts that fact that S is stable.

Our assumption that there was a stable matching S where J and C are not paired was incorrect. Thus we have shown
that if J and C are each other’s most preferred partners, they will be matched. in any stable matching.

(d) We disprove the statement by counterexample. Consider the following example with n = 2 jobs and candidates.

Jobs Candidates
J1 C1 ≻ C2

J2 C1 ≻ C2

Candidates Jobs
C1 J1 ≻ J2
C2 J1 ≻ J2

In this case, in the propose-and-reject algorithm, both jobs make offers to candidate C1. C1 will reject J2, and so the
next day J1 will make an offer to C1 and J2 will make an offer to C2, resulting in the following stable matching:

{(J1, C1), (J2, C2)}.

Here, J2 and C2, who are each other’s least preferred partners, are matched.

Based off of this example, we can see that this happens if some job J and candidate C are at the bottom of every
candidate’s and every job’s preference list, respectively. This allows us to construct a general counterexample.

We construct our jobs’ preferences lists so that they all share the same least preferred candidate.

Jobs Candidates
J1 C1 ≻ C2 ≻ C3 ≻ . . . ≻ Cn

J2 C2 ≻ C1 ≻ C3 ≻ . . . ≻ Cn

J3 C3 ≻ C1 ≻ C2 ≻ . . . ≻ Cn

...
...

Jn C1 ≻ C2 ≻ C3 ≻ . . . ≻ Cn

And we construct our candidates’ preferences lists so that they all share the same least preferred job.

Candidates Jobs
C1 J1 ≻ J2 ≻ J3 ≻ . . . ≻ Jn
C2 J2 ≻ J1 ≻ J3 ≻ . . . ≻ Jn
C3 J3 ≻ J1 ≻ J2 ≻ . . . ≻ Jn
...

...
Cn J1 ≻ J2 ≻ J3 ≻ . . . ≻ Jn

On the first day, job Ji makes an offer to candidate Ci for each i ∈ {1, . . . , n− 1}. Moreover, Ji is Ci’s most preferred
candidate, so by the improvement lemma, they will be matched.

However, Jn will make an offer to C1 on the first day and get rejected, to C2 on the second day and get rejected, and so
on. Meanwhile, Cn will not receive any offers until day n, where Jn makes an offer to Cn and the algorithm terminates
with the following stable matching.

{(J1, C1), (J2, C2), . . . , (Jn, Cn)}.
Here, Jn and Cn are paired even though they are each other’s least preferred partners. So we have disproven the
statement.

3 Counting Cartesian Products

(a) As shown in lecture, N × N is countable by creating a zigzag map which enumerates through the pairs of natural
numbers:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), . . .

. Since A is countable, there must exist some bijection f : A → SA between A and a subset S1 of N. Likewise, since B
is countable, there must exist some bijection g : B → SB between B and a subset SB of N.

We consider the function h : A×B → SA × SB , defined as follows:

h(a, b) := (f(a), g(b)).

This function is well defined, since for any a ∈ A, f(a) ∈ SA and for any b ∈ B, g(b) ∈ SB .

We claim h is a bijection. We must show that it is both an injection and a surjection.

h is an injection. Suppose that h(a1, b1) = h(a2, b2). That is, (f(a1), g(a1)) = (f(a2), g(a2)). Therefore f(a1) =
f(a2) and g(a1) = g(a2). But f is a bijection and thus an injection, so a1 = a2. Similarly, since g is a bijection and
thus an injection, b1 = b2. Thus we have that (a1, b1) = (a2, b2), as desired.

h is a surjection. Consider any (sa, sb) ∈ SA × SB . Since f is a bijection and thus a surjection, there exists some a
such that f(a) = sa. Similarly, since g is a bijection and thus a surjection, there exists some b such that g(b) = sb.
Therefore

h(a, b) = (f(a), g(b)) = (sa, sb),

so we have found an (a, b) such that h(a, b) = (sa, sb), as desired.

We have demonsrated a bijection from A×B to SA × SB ⊆ N× N. Since N× N is countable, we are done.

(b) By induction on n.

Base cases.

n = 1. If A1 is countable, then
1×

i=1

Ai = A1

is also countable.

n = 2. By part (a), if A1 and A2 are both countable, then A1 ×A2 is countable.

Induction case.

Induction hypothesis. Suppose that for some n ∈ N,

n×
i=1

Ai = A1 × . . .×An

is countable.

Induction step. Consider
n+1×
i=1

Ai =

(
n×

i=1

Ai

)
×An+1.

By the induction hypothesis,

A =
n×

i=1

Ai

is countable. By the n = 2 base case,
n+1×
i=1

Ai = A×An+1

is countable since both A and An+1 are countable.

(c) We demonstrate an injection from {0, 1}⋆, the set of infinite bit strings to our set.

For each i ∈ N+, enumerate Bi = {Bi0, Bi1, . . .}, where every set has at least two elements Bi0 and Bi1. Consider the
function

f : {0, 1}⋆ →
∞×
i=1

Bi

defined as follows: for each infinite binary string b0b1b2 . . . ∈ {0, 1}⋆, define

f(b0b1b2 . . .) := (B1b0 , B1b1 , B2b2 , . . .).

This is an injection. Consider two different infinite binary strings b0b1b2 . . . and c0c1c2 Since they are different,
there must be some i ∈ N such that bi ̸= ci, e.g. bi = 1 and ci = 0 or bi = 0 and ci = 1. Then Bibi ̸= Bici , since
Bi0 ̸= Bi1. Therefore

f(b0b1b2 . . . bi . . .) = (B1b0 , B1b1 , B2b2 , . . . , Bibi , . . .) ̸= (B1c0 , B1c1 , B2c2 , . . . , Bici , . . .).

So f is an injection. Therefore

|R| = |{0, 1}⋆| ≤

∣∣∣∣∣ ∞×
i=1

Bi

∣∣∣∣∣ .

That is, the set is uncountable, since its cardinality is at least the cardinality of the real numbers.

Alternatively, we can prove that the set is uncountable by diagonalization. Suppose for contradiction that S = B1×B2×
is countable and it can be enumerated. That is, we can write S = {s1, s2, s3, s4, . . .}. Then we can write the enumeration
as follows

1 2 3 4 . . .
s1 (b11 b21 b31 b41 . . .)
s2 (b12 b22 b32 b42 . . .)
s3 (b13 b23 b33 b43 . . .)
s4 (b14 b24 b34 b44 . . .)
...

...
...

...
...

. . .

where bij represents the item from Bi which is included is the jth enumerated element of S.

Consider the element
s = (b̄11, b̄22, b̄33, b̄44 . . .),

where b̄ii is any element from Bi which is not bii. Such an element of each Bi exists since every Bi has at least two
elements.

Then s ∈ S, since it is an infinite sequence of elements from B1, B2, and so on. However, by construction, s is not the
same as any elements in the numerator {s1, s2, s3, . . .}, since it differs from sk at the kth position, where b̄kk ̸= bkk by
construction. So s /∈ S. This is a contradiction, so our assumption that S could be enumerated was incorrect.

We have shown that S is uncountable.

4 Counting Shapes

(a) We prove that every collection of filled squares is countable. We will show an injection from any collection C to Q×Q.
Here, we know Q×Q to be countable since Q is countable, and by Question 3, finite Cartesian products of countable
sets are countable.

For any filled square F ∈ C, we can find a point (pF , qF) ∈ F in F with rational coordinates. Let 2rF ∈ R be the side
length of F and let (xF , yF) ∈ F be the center of F . Then

F = [xF − rF , xF + rF]× [yF − rF , yF × rF].

However, any interval of the real contains a rational number (in fact, infinitely many), so there is some rational
pF ∈ [xF − rF , xF + rF] and there is some rational qF ∈ [yF − rF , yF + rF]. Therefore (pF , qF) ∈ F , but also
(pF , qF) ∈ Q×Q.

Once we have found such a rational point for each filled square in C, we define the function f : C → Q × Q as
f(F) := (pF , qF) for every F ∈ C.

We claim f is an injection. Suppose that for F1, F2 ∈ C, f(F1) = f(F2). That is, (p1, q1) = (p2, q2), where (p1, q1) ∈ F1

and (p2, q2) ∈ F2 are the rational points assigned to F1 and F2. Call this one point (p, q) = (p1, q1) = (p2, q2).

That is, F1 and F2 both contain the rational point (p, q). Then it cannot be that F1 ̸= F2, since F1 and F2 must be
disjoint if they are two distinct elements of C. It must be that F1 = F2. So f is an injection.

Therefore we have shown that for any C,
|C| ≤ |Q×Q| = |N|.

That is, any collection C must be countable, since it is at most as large as a countable set.

(b) We prove that there exists a collection C of empty squares which is uncountable.

For each r ∈ R, we have a square Vr ∈ C with corners at

(−r/2,−r/2), (r/2,−r/2), (−r/2, r/2), (r/2, r/2).

That is, Vr is the square with side length r centered at the origin. Then no two squares in C intersect.

Consider the function f : R → C defined as f(r) = Vr for each r ∈ R. We claim this is an injection. Suppose that we
have two different real numbers r, s ∈ R. Then, by construction, f(r) = Vr ̸= Vs = f(s), since Vr has side length r and
Vs has side length s.

Since f is an injection,
|R| ≤ |C|,

so C is uncountable because it is at least as large as an uncountable set.

(c) We prove that every collection of halved empty squares is countable. As in (a), we will show an injection from any
collection C to a countable set.

To determine what to inject any given collection to, we need to find some “information” about any given halved empty
square in the collection which distinguishes it from every other halved empty square.

Note that while a rational point exists inside the square, that is not enough to distinguish between two halved empty
squares because halved empty squares can be inside one another. Rather, we may want to consider using more
information than just one rational point: instead, we could use two rational points.

Many constructions will work, such as considering a rational point inside and a rational point outside a given halved
empty square. Here, we will consider placing a rational point in each the top and bottom halves of the square.

For any halved empty square H ∈ C, we can find a point (pUH , qUH) in the upper half of H with rational coordinates, and
we can likewise find a point (pLH , qLH) in the lower half of H with rational coordinates. The process is much the same
as in (a).

(pUH , qUH)

(pLH , qLH)

Once we have a pair of rational points for each halved empty square in C, we define the function f : C → (Q×Q)×(Q×Q)
as f(H) := ((pUH , qUH), (pLH , qLH)). By Question 2, (Q × Q) × (Q × Q) = Q4 is countable since it is a finite Cartesian
product of countable sets.

We claim that f is an injection. Suppose that for H1, H2 ∈ C, f(H1) = f(H2). That is,

((pU1 , q
U
1), (p

L
1 , q

L
1)) = ((pU1 , q

U
1), (p

L
1 , q

L
1)).

Call this pair of points ((pU , qU), (pL, qL)).

If H2 has a point in its upper half which is in the upper half of H1, and H2 has a point in its lower half which is in the
lower half of H1, it must necessarily intersect with H1.

H1

(pU , qU)

(pL, qL)

H1

(pU , qU)

(pL, qL)

Since C consists of disjoint shapes, it must be that H1 = H2. So f is an injection.

Therefore for any collection C,
|C| ≤ |Q4| = |N|,

so any C is countable since it has cardinality at most that of a countable set.

5 Edge Complement

(a) We prove the statement via a direct proof. Consider any edge {i, j} ∈ E in G. If G has an Eulerian tour, then both the
vertices i and j had an even number of incident edges. In particular, besides {i, j}, the vertex i had an odd number of
other incident edges {i, k} for k ̸= j and the vertex j had an odd number of other incident edges {j, ℓ} for ℓ ̸= i.

In G′, the edge {i, j} becomes a vertex. We show that it must have an even number of edges. Note that {i, j} gets an
edge for each of the odd number of vertices k ̸= j which i was adjacent to. Likewise, {i, j} gets an edge for each of the

odd number of vertices ℓ ̸= i which j was adjacent to. The vertex {i, j} gets no additional edges, since it can only form
an edge with another vertex if that vertex represents an edge containing one of i and j.

Therefore the vertex {i, j} has an even number of edges in G′, since the sum of two odd numbers is even. However,
this vertex was arbitrary. So every vertex in G′ has an even number of edges. Therefore G′ has an Eulerian tour.

(b) We disprove the statement. If there is an Eulerian tour in G′, then every vertex {i, j} will have an even number of
neighbors. This means that in G, there are either an odd number of edges besides {i, j} incident to each i and j or
there are an even number of edges besides {i, j} incident to each i and j. If, for example, in G there were an even
number of edge ni incident to i but an odd number of edges nj incident to j, then in G′, the vertex {i, j} would have
ni + nj neighbors, which would be an odd number. So such a situation cannot happen.

If i and j each have an odd number of edges besides {i, j} incident to them, then they each have even degree. However,
if i and j each have an even number of edges besides {i, j} incident to them, then they each have odd degree. In such
a situation, G will not have an Eulerian tour.

We can use the above idea to construct our counterexample. We need to create edges {i, j} such that i and j both have
odd degree. Consider the following graph G and its edge complement graph G′.

1

2

34

G

{1
,2
}

{1, 3}{1
, 4
}

{1, 2}

{1, 3}{1, 4}

G′

1

1

1

The graph G′ has an Eulerian tour since all its vertices have even degree. However, the graph G does not have an
Eulerian tour since the vertex 1 has odd degree.

6 Filling the grid

(a) We use a direct proof. Suppose that there are an odd number of blanks in a row or column. That is, let the number
of blanks in that row or column be 2k+1 for some k ∈ N. Then the number of +1s in that column must be between 0
and 2k + 1. In particular, for n+ ∈ {0, 1, . . . , 2k, 2k + 1} the number of +1s in that row or column, the number of −1s
in that row or column will be n− = (2k + 1)− n+. Therefore the sum for that row or column will be

n+∑
i=1

1 +

n−∑
i=1

(−1) = n+ − n− = n+ − (2k + 1− n+) = 2(n+ − k)− 1.

For this sum to be 0, we require that n+ − k = 1/2. Since k, n+ ∈ N are both natural numbers, this is impossible. So
if there are an odd number of blanks in a row or column, then there is no way to fill the grid.

(b) Simply drawing the vertice and edges yields the following graph.

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

However, drawing out the graph in a more reasoned manner results in the following drawing, which is easier to work
with.

r1

c3

r5

c1

r3

r2

c4

c2c5

r4

(c) There are any. Here is one possible Eulerian tour.

r1

c3

r5

c1

r3

r2

c4

c2c5

r4

1
2 3 4 5

6

7

89
10

11
12

(d) We use the Eulerian tour from (c).

r1

c3

r5

c1

r3

r2

c4

c2c5

r4

(e) For v ∈ {r1, c3, r5, r3, c4, c2, r4, c5} we have that

deg−(v)− deg+(v) = 1− 1 = 0.

For v ∈ {c1, r2}, we have that
deg−(v)− deg+(v) = 2− 2 = 0.

The difference is always zero; that is, the in-degree and out-degree are the same.

(f) If an edge in G′ has direction ri → cj , we fill in the corresponding block with +1. If the edge instead has direction
cj → ri, we fill in −1.

To show that this works, we must show that each row and column sum up to zero. For a Eulerian tour, we know that
it must enter and exit each vertex the same number of times. For each row vertex ri we know that our tour enters it
deg−(ri) times and exits it deg+(ri) times. Thus we must have deg−(ri) = deg+(ri), which validates our observation
from (e). The same is true for each column vertex cj .

Then, for each row, because the edges exiting it correspond to +1 and edges entering it correspond to −1, we know the
total sum is deg+(ri)− deg−(ri) = 0. For each column, the opposite is true: the total sum is deg−(cj)− deg+(cj) = 0.
Thus, the total sum is always zero for each row and column.

When we apply this to our graph G′, we get

r1

c3

r5

c1

r3

r2

c4

c2c5

r4

+
1

−
1 +

1 −
1 +

1

−
1

+
1

−
1+

1

−
1

+
1−

1

This yields the following solution to Aliyah’s 5× 5 grid.

−1 +1

+1 +1 −1 −1

−1 +1

−1 +1

+1 −1

7 Planarity and Graph Complements

(a) If G has v vertices, then there are a total of v(v−1)
2 edges that could possibly exist in the graph. Since e of them appear

in G, we know that the remaining v(v−1)
2 − e must appear in G.

(b) Since G is planar, we know that e ≤ 3v − 6. Plugging this in to the answer from the previous part, we have that

G has at least v(v−1)
2 − (3v − 6) edges. Since v is at least 13, we have that v(v−1)

2 ≥ v·12
2 = 6v, so G has at least

6v− 3v+6 = 3v+6 edges. Since this is strictly more than the 3v− 6 edges allowed in a planar graph, we have that G
must not be planar.

(c) The converse is not necessarily true. As a counterexample, suppose that G has exactly 13 vertices, of which five are
all connected to each other and the remaining ten have no edges incident to them. This means that G is non-planar,
since it contains a copy of K5. However, G also contains a copy of K5 (take any 5 of the 8 vertices that were isolated
in G), so G is also non-planar. Thus, it is possible for both G and G to be non-planar.

8 Hypercubes

(a) The three hypercubes are a line, a square, and a cube, respectively. See also note 5 for pictures.

(b) Consider each edge that changes the ith bit for some i ≤ n. Every vertex touches exactly one of these edges, because
there is exactly one way to change the ith bit in any bitstring. Coloring each of these edges color i ensures that each
vertex will then be adjacent to n differently colored edges, since there are n different bits to change, and no two edges
representing bit changes on different bits have the same color.

An example for the three dimensional case is shown below (red is the first bit, blue is the second bit, and green is the
third bit):

000 001

100
101

011
010

111110

Alternate solution (using induction):

In the base case of n = 1, the hypercube of only one line can be edge colored with 1 color. Next, suppose that the n
dimensional hypercube can be colored with n colors. Recall that the n+ 1 dimensional hypercube is composed of two
n dimensional hypercubes; each of these hypercubes can be colored with n colors by the inductive hypothesis.

We can connect the two n dimensional hypercubes with edges colored with a different color; this will be our (n+ 1)th
color. Since these new edges will always be between distinct pairs of vertices, one from each subcube, none of these
new edges will share a vertex, giving a valid coloring of the n+ 1 dimensional hypercube with n+ 1 colors.

(c) Consider the vertices with an even number of 0 bits and the vertices with an odd number of 0 bits. Each vertex with
an even number of 0 bits is adjacent only to vertices with an odd number of 0 bits, since each edge represents a single
bit change (either a 0 bit is added by flipping a 1 bit, or a 0 bit is removed by flipping a 0 bit). Let L be the set of the
vertices with an even number of 0 bits and let R be the vertices with an odd number of 0 bits, then no two adjacent
vertices will belong to the same set.

An example for the three dimensional case is shown below (L are blue vertices, and R are red vertices):

000 001

100
101

011
010

111110

Alternate solution (using induction and coloring):

It may be simpler to that a graph being 2-colorable is the same as being bipartite. Now, the argument is easier to
state. First the base case is a hypercube with two vertices which is clearly two-colorable. Then notice, switching the
colors in a two-coloring is still valid as if endpoints are differently colored, switching leaves them differently colored.
Now, recursively one two colors the two subcubes the same, and then switches the colors in one subcube. The internal
to subcube edges are fine by induction. The edges across are fine as the corresponding vertices are differently colored
due to the switching.

	Stable Matching Proofs
	Best-Case and Worst-Case Scenarios
	Counting Cartesian Products
	Counting Shapes
	Edge Complement
	Filling the grid
	Planarity and Graph Complements
	Hypercubes

