
Homework 1

CS 70, Summer 2024

Due by Friday, June 28th at 11:59 PM

This content is protected and may not be shared, uploaded, or distributed.

Instructions. Start each problem on a separate page. The subparts of each problem can be on the same page. Every answer
should contain a calculation or reasoning. Your answers should be clear, organized, and legible—your final submission should
not include scratch work or failed attempts. You must always commit to a final answer; if multiple answers are provided, the
most incorrect one will be graded.

If you are completing the homework using LATEX, you may use the templates. Homeworks must be submitted through
Gradescope. See the end of the homework for submission instructions.

Sundry. Before you start writing your final homework submission, state briefly how you worked on it (e.g., if you went to
office hours, how frequently you worked on it, etc.). If you worked on the assignment in a group with other students, list
their names and email addresses.

1 The Boolean Algebra

We have seen that we are able to prove tautological truth and tautological equivalence using truth tables. However, the truth
table algorithm is exponential in the number of inputs: if there are n variables in the propositional form, there will be 2n

rows in our truth table. This motivates us to find an alternate method for showing truth and equivalence in propositional
logic.

The Boolean algebra provides us a base set of tautological truths and tautological equivalences which we can use to simplify
most propositional forms. The Boolean algebra consists of the following tautological equivalences. The laws for conjunction
and disjunction come in pairs. There is only one law for negation and only one law for implication.

Name Conjunctive Rule Disjunctive Rule
identity law T ∧ P ≡ P F ∨ P ≡ P

annihilation law F ∧ P ≡ F T ∨ P ≡ T
idempotent law P ∧ P ≡ P P ∨ P ≡ P

inverse law P ∧ ¬P ≡ F P ∨ ¬P ≡ T
commutative law P ∧Q ≡ Q ∧ P P ∨Q ≡ Q ∨ P
associative law (P ∧Q) ∧R ≡ P ∧ (Q ∧R) (P ∨Q) ∨R ≡ P ∨ (Q ∨R)
distributive law P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)
absorption law P ∧ (P ∨Q) ≡ P P ∨ (P ∧Q) ≡ P

De Morgan’s law ¬(P ∧Q) ≡ ¬P ∨ ¬Q ¬(P ∨Q) ≡ ¬P ∧ ¬Q

Name Rule
double negation ¬¬P ≡ P

Name Rule
modus tollens (P =⇒ Q) ≡ ¬Q =⇒ ¬P

The remaining laws in the Boolean algebra are tautological truths. Note that the first is just the inverse law for disjunctions,
and that the last is just proof by contradiction.

Name Tautology
law of the excluded middle P ∨ ¬P

conjunction elimination (P ∧Q) =⇒ P
modus ponens

(
(P =⇒ Q) ∧ P

)
=⇒ Q

proof by cases
(
(P ∨Q) ∧ (P =⇒ R) ∧ (Q =⇒ R)

)
=⇒ R

reductio ad absurdum (¬P =⇒ F) =⇒ P

(a) We have already proved many of these equivalences and truths in the class so far. We will now prove some more. You
may not use the Boolean algebra in any of these proofs.

(i) Prove that reductio ad absurdum is tautologically true.

(ii) Prove the tautological equivalence in the absorption law for conjunction.

(iii) Prove that the proof by cases law is tautologically true.
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(b) Let’s use the Boolean algebra to prove that different propositional forms are tautologically equivalent. We can do this
by chaining equivalence laws together.

Here’s an example.

Example 1. (B ∧A) ∨A ≡ A ∧ (B ∨A).

(B ∧A) ∨A ≡ A ∨ (B ∧A) (commutation)

≡ (A ∨B) ∧ (A ∨A) (distribution)

≡ (A ∨B) ∧A (idempotence)

≡ A ∧ (A ∨B). (commutation)

Use the Boolean algebra to prove that each of the following pairs of propositional forms are equivalent. You may not
use truth tables in your proofs. Justify each line of your proof with a law from the Boolean algebra.

(i) (A ∨B) ∧ C ∧ (¬(¬B ∧ ¬A) ∨B) and (A ∨B) ∧ C.

(ii) (A ∧B) ∨ (A ∧ C) and A ∧ (B ∨A) ∧ (A ∨ C) ∧ (B ∨ C).

(c) In this part, we will use the Boolean algebra to prove propositional forms are tautologically true without using truth
tables.

The last law needed to use the Boolean algebra is the law of substitution. This is the rule that if two propositional
formulas are equivalent, then we can substitute them for one another in expressions without changing the truth value
of the expression.

Here’s an example of how to prove something is tautologically true using the Boolean algebra.

Example 2. ¬(P ∨Q) =⇒ ¬P .

(1) By De Morgan’s law, ¬(P ∨Q) ≡ ¬P ∧ ¬Q.

(2) By conjunction elimination, (¬P ∧ ¬Q) =⇒ ¬P .

(3) By (1), we can substitute ¬P ∧ ¬Q with ¬(P ∨Q) in (2). So ¬(P ∨Q) =⇒ ¬P .

In the proof, we used the conjunction elimination tautology and the De Morgan’s law equivalence to show that ¬(P ∨
Q) =⇒ ¬P is also a tautology.

Here is another example of proving a tautology using the Boolean algebra.

Example 3.
(
(B ∧A) ∨A

)
=⇒ A.

(1) By Example 1, (B ∧A) ∨A ≡ A ∧ (A ∨B).

(2) By conjunction elimination,
(
A ∧ (A ∨B)

)
=⇒ A.

(3) By (1), we can substitute A ∧ (A ∨B) with (B ∧A) ∨A in (2). So
(
(B ∧A) ∨A

)
=⇒ A.

Use the Boolean algebra to prove that each of the following are tautologically true. You may not use truth tables in
your proof. Justify each line of your proof.

(i)
(
(A ∧B) ∨ (A ∧ C)

)
=⇒ A.

(ii) The disjunctive syllogism:
(
(P ∨Q) ∧ ¬P

)
=⇒ Q.

2 Binary Relationships

Let R be a binary predicate such that the following are true.

(1) ∀x∀y
(
R(x, y) =⇒ R(y, x)

)
.

(2) ∃x∀yR(x, y).

(a) Prove or disprove whether each of the following are logically implied by conditions (1) and (2).

(i) ∀x∃yR(x, y).

(ii) ∀xR(x, x).

(iii) ∃y∀xR(x, y).



(iv) ∀x∀y(R(x, y) ∨R(y, x)).

(b) Consider the natural numbers with the binary predicate R(x, y) as “x · y = 0.”

(i) Check that the conditions (1) and (2) are true of R in this setting.

(ii) Translate conditions (1) and (2), when applied to this setting, into simple English sentences.

3 Prime Factorization

In this problem, we will prove the fundamental theorem of arithmetic: any integer n ≥ 2 can be factorized as a product of
powers of its prime factors. That is, for any integer n ≥ 2, we can write

n = pq11 · pq22 · . . . · pqmm ,

where p1, p2, . . . , pm are prime numbers and q1, q2, . . . , qm are positive integers.

(a) We first consider the case where n is prime. Show that the fundamental theorem of arithmetic holds when n is itself a
prime number.

(b) Now we consider the case when n is not prime; that is, n is composite. By the definition of a composite number, there
exists a positive integer d such that d | n and 1 < d < n. We call d a nontrivial divisor of n.

Prove that if d and n/d can be factorized as a product of powers of its prime factors, then n can also be factorized as
a product of powers of its prime factors.

(c) Using induction and the two parts above, prove the fundamental theorem of arithmetic.

4 Induction or Contradiction?

In this problem, we will learn a proof technique which is equivalent to induction. We will use the motivating example of
proving Bernoulli’s inequality: (1 + x)n ≥ nx+ 1 for all n ∈ N and all x ∈ R such that 1 + x > 0

(a) Suppose there exists some natural number such that Bernoulli’s inequality is false. Let k ∈ N be the smallest number
which is a counterexample to Bernoulli’s inequality: (1 + x)k < kx+ 1.

Explain why k ̸= 0.

(b) Continuing from part (a), prove we must have (1 + x)k−1 ≥ (k − 1)x+ 1. Do not use induction.

(c) Continuing from parts (a) and (b), multiply (1 + x) on both sides of the inequality (1 + x)k−1 ≥ (k − 1)x + 1 from
part (b). Observe what occurs and use your observation to complete the proof of Bernoulli’s inequality.

(d) Now, prove Bernoulli’s inequality using the principle of induction instead.

Once you’re done, take a moment to think about the difference between the proof by contradiction in parts (a), (b),
and (c) and the proof by induction. In particular, consider which step of the proof by contradiction is equivalent to
the principle of induction. You don’t need to include these thoughts and considerations in your answers.

5 Quick Proofs

Prove each of the following statements.

(a) For a, b, c ∈ N, if a | b and b | c, then a | c.

(b) If the sum of digits of n ∈ N is divisible by 9, then n is divisible by 9.

(c) If a+ b < c+ d, then a < c or b < d.

(d) ∀x, y ∈ R, min(x, y) = (x+ y − |x− y|)/2.

You may use without proof the fact that the absolute value of a real number z is defined as

|z| =

{
z z ≥ 0,

−z z < 0.



6 Card Game

Azibo is playing with a deck of n ≥ 1 cards. The front sides of the cards are labeled with the numbers 1 through n; we’ll
refer to them as Card 1 through Card n. The back sides of the cards contain an instruction to go to another card in the deck.

Azibo picks one of the n cards as his starting card. Let this card’s number be c1. Azibo follows the instruction on the back
side to visit a new card, whose number we will call c2. Then he follows the instruction on the back side of the new card to
visit yet another card number c3. And so on.

For example, consider the n = 3 cards given below, where the top halves represent the front sides of the cards and the bottom
halves represent the back sides of the cards.

Card 1

Go to 3

Card 2

Go to 1

Card 3

Go to 3

If Azibo picks Card 2 as his first card, he will make the following steps: Card 2 to Card 1, and then Card 1 to Card 3, and
then Card 3 to Card 3, and so on. This yields c1 = 2, c2 = 1, c3 = 3, c4 = 3, . . .

We say that the cards have a loop if there is a sequence of at least two cards which return to the first card of the sequence.
More formally, we say that the cards have a loop if we can pick a starting card c1 such that for some ℓ > 1, the cards c1, . . . , cℓ
are all distinct and cℓ+1 = c1. For example, the earlier three cards do not have a loop. Note that a card which goes to itself
is not a loop.

The below deck of n = 4 cards has a loop.

Card 1

Go to 3

Card 2

Go to 3

Card 3

Go to 4

Card 4

Go to 2

The loop is the sequence with starting card c1 = 2 and ℓ = 3:

c1 = 2, c2 = 3, c3 = 4, c4 = 2.

(a) Prove or disprove: if there is a card in the deck which goes to itself, then there are no loops.

(b) Prove or disprove: if there are no loops in the deck, there there must be some card which goes to itself.

(c) Suppose that Azibo’s cards have no loop and that Card 1 is the only card which goes to itself. Prove that no matter
which card Azibo starts with, the number of the nth card that Azibo visits, cn, is always the same. Determine the card
number cn of the nth card Azibo visits.

Submission. Homeworks must be submitted through Gradescope. If you are completing your homeworks on paper, please
scan the pages of your homework into a PDF using any scanner or phone application such as CamScanner. It is your
responsibility to ensure that all the work on the scanned pages is legible.

Once you upload your submission to the Gradescope assignment, you will be prompted to select pages. It is your re-
sponsibility to correctly select the pages of your homework corresponding to each question. If you are having
difficulties scanning, uploading, or submitting your homework, post a follow-up on the main thread corresponding to this
homework on Ed.
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