Discussion 6D

1 Random Walk

Consider the following Markov chain with 5 states.

Let X_{t} be the current state at time t. Suppose initially,

$$
\pi_{0}=(0.2,0.3,0.1,0.3,0.1)
$$

(a) Without writing down the transition matrix P, calculate what is $\operatorname{Pr}\left[X_{1}=3\right]$.
(b) Calculate $\operatorname{Pr}\left[X_{0}=2 \wedge X_{1}=4 \wedge X_{2}=3 \wedge X_{3}=3 \wedge X_{4}=2 \wedge X_{5}=4\right]$. Leave your answer as a product.
(c) Without writing down the balance equations, what is the stationary distribution of this Markov chain? Why?
(d) If we modify the Markov chain to the following:

Write down the balance equation (no need to solve it now).

2 Build Your Markov Chain

For each of the following random processes, propose a finite-size Markov chain to describe it. You should both draw the diagram, write down the transition matrix P for the Markov chain you build, and the starting distribution π_{0}.

In the following, H stands for "head" and T stands for "tail".
(a) We repeatedly flip a fair coin and let the sequence $Z_{1}, Z_{2}, Z_{3} \ldots$ be the result. That is, $Z_{i}=1$ if and only if the i-th flip is H (and otherwise $Z_{i}=0$). Try to model $Z_{1}, Z_{2}, Z_{3} \ldots$ as Markov chain. (Let's say $Z_{0}=0$.)
(b) You are trying to use a machine that only works on some days. If on a given day the machine is working, it will break down the next day with probability $0<b<1$, and works on the next day $1-b$. If it is not working on a given day, it will work on the next day with probability $0<r<1$, and not work on the next day with probability $1-r$. Say the initial state of it is uniformly random between these two.
(c) A rabbit is jumping on a two by two grid. Initially, it is at the top left square. At every minute, it jumps to one of the two adjacent square with equal probability. However, there is a trap at the bottom right square. So if the rabbit enters that square, it will never leave that square. See the figure below (R stands for the rabbit and T stands for the trap).

(d) We again repeatedly flip a fair coin. Let $Y_{1}=Y_{2}=0$ and for $i \geq 3, Y_{i}=1$ if and only if the last three flips are HTT (and otherwise $Y_{i}=0$). Try to model $Y_{1}, Y_{2}, Y_{3} \ldots$ as markov chain.
(Hint: Is the process memoryless if we use the value Y_{i} as our states? What about using the result of the last three flips as our states? Can you use fewer states? There is a solution using four states.)

3 Markov Chain Terminology

In this question, we will walk you through terms related to Markov chains.

- (Irreducibility) A Markov chain is irreducible if, starting from any state i, the chain can transition to any other state j, possibly in multiple steps.
- (Periodicity) $d(i):=\operatorname{gcd}\left\{n>0 \mid P^{n}(i, i)=\operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}, i \in \mathscr{X}$. If $d(i)=1 \forall i \in \mathscr{X}$, then the Markov chain is aperiodic; otherwise it is periodic.
- (Matrix Representation) Define the transition probability matrix P by filling entry (i, j) with probability $P(i, j)$.
- (Invariance) A distribution π is invariant for the transition probability matrix P if it satisfies the following balance equations: $\pi=\pi P$.

(a) For what values of a and b is the above Markov chain irreducible? Reducible?
(b) For $a=1, b=1$, prove that the above Markov chain is periodic.
(c) For $0<a<1,0<b<1$, prove that the above Markov chain is aperiodic.
(d) Construct a transition probability matrix using the above Markov chain.
(e) Write down the balance equations for this Markov chain and solve them. Assume that the Markov chain is irreducible.

