Discussion 6B

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 Inequality Practice

(a) We want to use Markov's Inequality, but recall that Markov's Inequality only works with non-negative random variables. So, we define a new random variable $\tilde{X}=X+5$, where \tilde{X} is always non-negative, so we can use Markov's on \tilde{X}. By linearity of expectation, $\mathrm{E}[\tilde{X}]=-3+5=2$. So, $\operatorname{Pr}[\tilde{X} \geq 4] \leq 2 / 4=1 / 2$.
(b) We again use Markov's Inequality. Similarly, define $\tilde{Y}=-Y+10$, and $\mathrm{E}[\tilde{Y}]=-1+10=9 . P[Y \leq-1]=P[-Y \geq$ $1]=P[-Y+10 \geq 11] \leq 9 / 11$.
(c) Let Z_{i} be the number on the die for the i th roll, for $i=1, \ldots, 100$. Then, $Z=\sum_{i=1}^{100} Z_{i}$. By linearity of expectation, $\mathrm{E}[Z]=\sum_{i=1}^{100} \mathrm{E}\left[Z_{i}\right]$.

$$
\mathrm{E}\left[Z_{i}\right]=\sum_{j=1}^{6} j \cdot \operatorname{Pr}\left[Z_{i}=j\right]=\sum_{j=1}^{6} j \cdot \frac{1}{6}=\frac{1}{6} \cdot \sum_{j=1}^{6} j=\frac{1}{6} \cdot 21=\frac{7}{2}
$$

Then, we have $\mathrm{E}[Z]=100 \cdot(7 / 2)=350$.

$$
\mathrm{E}\left[Z_{i}^{2}\right]=\sum_{j=1}^{6} j^{2} \cdot \operatorname{Pr}\left[Z_{i}=j\right]=\sum_{j=1}^{6} j^{2} \cdot \frac{1}{6}=\frac{1}{6} \cdot \sum_{j=1}^{6} j^{2}=\frac{1}{6} \cdot 91=\frac{91}{6}
$$

Then, we have

$$
\operatorname{Var}\left(Z_{i}\right)=\mathrm{E}\left[Z_{i}^{2}\right]-\mathrm{E}\left[Z_{i}\right]^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
$$

Since the Z_{i} s are independent, and therefore uncorrelated, we can add the $\operatorname{Var}\left(Z_{i}\right)$ s to get $\operatorname{Var}(Z)=100 \times(35 / 12)$.
Finally, we note that we can upper bound $\operatorname{Pr}[|Z-350|>50]$ with $\operatorname{Pr}[|Z-350| \geq 50]$.
Putting it all together, we use Chebyshev's to get

$$
\operatorname{Pr}[|Z-350|>50]<\operatorname{Pr}[|Z-350| \geq 50] \leq \frac{100 \times(35 / 12)}{50^{2}}=\frac{7}{60}
$$

2 Crazy High Moments

(a) To see this, we first fully expand the sum,

$$
\left(X_{1}+X_{2}+\cdots+X_{n}\right)^{4}=\sum_{i=1}^{n} X_{i}^{4}+\binom{4}{2} \sum_{i<j} X_{i}^{2} X_{j}^{2}+\binom{4}{1} \sum_{i \neq j} X_{i} X_{j}^{3}+2 \cdot\binom{4}{2} \sum_{\substack{i, j, k \\ \text { distinct } \\ j<k}} X_{i}^{2} X_{j} X_{k}+4!\cdot \sum_{i<j<k<t} X_{i} X_{j} X_{k} X_{t}
$$

By linearity of expectation, the expectation of this sum is the same as the sum of the expectations of each term. By indepndence, we know $\mathrm{E}\left[X_{i} X_{j}^{3}\right]=\mathrm{E}\left[X_{i}\right] \cdot \mathrm{E}\left[X_{j}^{3}\right]=0$ because $\mathrm{E}\left[X_{i}\right]=0$. Similarly, $\mathrm{E}\left[X_{i}^{2} X_{j} X_{k}\right]=\mathrm{E}\left[X_{i}^{2}\right] \cdot \mathrm{E}\left[X_{j}\right] \cdot \mathrm{E}\left[X_{k}\right]=0$ and $\mathrm{E}\left[X_{i} X_{j} X_{k} X_{t}\right]=\mathrm{E}\left[X_{i}\right] \mathrm{E}\left[X_{j}\right] \mathrm{E}\left[X_{k}\right] \mathrm{E}\left[X_{t}\right]=0$. This proves that

$$
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)^{4}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}^{4}\right]+\binom{4}{2} \cdot \sum_{i<j} \mathrm{E}\left[X_{i}^{2}\right] \cdot \mathrm{E}\left[X_{j}^{2}\right]
$$

(b) By linearity of expectation, $\mathrm{E}[Z]=\sum_{i=1}^{100} \mathrm{E}\left[Z_{i}\right]$. We know that $\mathrm{E}\left[(Z-\mathrm{E}[Z])^{4}\right]=\mathrm{E}\left[\left(\sum_{i=1}^{100} Z_{i}-\mathrm{E}\left[Z_{i}\right]\right)^{4}\right]=\mathrm{E}\left[\left(\sum_{i=1}^{100} X_{i}\right)^{4}\right]$. Because all the X_{i} 's we defined has expectation zero, we can apply (a).

The problem then boils down to calculating $\mathrm{E}\left[X_{i}^{4}\right]$ and $\mathrm{E}\left[X_{i}^{2}\right] \cdot \mathrm{E}\left[X_{j}^{2}\right]$.

$$
\mathrm{E}\left[X_{i}^{4}\right]=\sum_{j=1}^{6}(j-3.5)^{4} \cdot \operatorname{Pr}\left[Z_{j}=j\right]=\frac{1}{6} \sum_{j=1}^{6}(j-3.5)^{4}=\frac{707}{48} .
$$

For $\mathrm{E}\left[X_{i}^{2}\right] \cdot \mathrm{E}\left[X_{j}^{2}\right]$, we reuse the calculation we had for $1(\mathrm{c}), \mathrm{E}\left[X_{i}^{2}\right]=\operatorname{Var}\left[Z_{i}\right]=\frac{35}{12} . \mathrm{E}\left[X_{i}^{2}\right] \cdot \mathrm{E}\left[X_{j}^{2}\right]=\left(\frac{35}{12}\right)^{2}=\frac{1225}{144}$. Thus

$$
\begin{aligned}
\mathrm{E}\left[(Z-\mathrm{E}[Z])^{4}\right] & =\mathrm{E}\left[\left(\sum_{i=1}^{100} X_{i}\right)^{4}\right] \\
& =100 \cdot \frac{707}{48}+\binom{4}{2} \cdot\binom{100}{2} \cdot \frac{1225}{144} \\
& =\frac{1524775}{6}
\end{aligned}
$$

(apply 2(a).)
(c) We apply Markov's inequality and get,

$$
\operatorname{Pr}[Z>400] \leq \operatorname{Pr}\left[(Z-350)^{4}>50^{4}\right] \leq \frac{1524775 / 6}{50^{4}} \approx 254129.0 / 6250000 \approx 0.04066
$$

Here we used $1524775 / 6 \approx 254129.0$ as in the hint.
The number we got in $1(\mathrm{c})$ was $7 / 60 \approx 0.116667$. We get a much tighter tail bound by looking at the fourth moment. With higher moments, we will get even better bounds.

3 Estimating μ and σ^{2}

(a) $\mathbb{E}[\hat{\mu}]=\mathbb{E}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{1}{n} \mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n} n \cdot \mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{i}\right]$.
(b) $\mathrm{E}\left[X_{i}^{2}\right]=\operatorname{Var}\left[X_{i}\right]+\mathrm{E}\left[X_{i}\right]^{2}=\sigma^{2}+\mu^{2}$ and $\mathrm{E}\left[X_{i} X_{j}\right]=\mu^{2}(i \neq j)$.
(c) We first write $\hat{\sigma}^{2}$ using $X_{1}, X_{2}, \ldots, X_{n}$:

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\left(X_{1}-\hat{\mu}\right)^{2}+\left(X_{2}-\hat{\mu}\right)^{2}+\ldots+\left(X_{n}-\hat{\mu}\right)^{2}}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \hat{\mu}+\hat{\mu}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \hat{\mu}\right)+\hat{\mu}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \cdot \frac{1}{n} \sum_{j=1}^{n} X_{j}\right)+\left(\frac{1}{n} \sum_{j=1}^{n} X_{j}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\left(1-\frac{2}{n}+\frac{1}{n}\right) X_{i}^{2}+\left(-\frac{2}{n}+\frac{1}{n}\right) \sum_{j: j \neq i} X_{i} X_{j}\right)
\end{aligned}
$$

Therefore, by linearity of expectation,

$$
\begin{aligned}
\mathrm{E}\left[\hat{\sigma}^{2}\right] & =\frac{1}{n} \sum_{i=1}^{n}\left(\left(1-\frac{2}{n}+\frac{1}{n}\right)\left(\sigma^{2}+\mu^{2}\right)+\left(-\frac{2}{n}+\frac{1}{n}\right) \sum_{j: j \neq i} \mu^{2}\right) \\
& =\left(1-\frac{2}{n}+\frac{1}{n}\right)\left(\sigma^{2}+\mu^{2}\right)+\left(-\frac{2}{n}+\frac{1}{n}\right) \cdot(n-1) \cdot \mu^{2} \\
& =\frac{n-1}{n} \cdot\left(\sigma^{2}+\mu^{2}\right)-\frac{n-1}{n} \cdot \mu^{2} \\
& =\frac{n-1}{n} \sigma^{2}
\end{aligned}
$$

(d) Propose a modified estimation $\hat{\sigma}^{2}$ which does satisfy the property.

We use $\hat{\sigma}_{\text {unbias }}^{2}=\frac{\left(X_{1}-\hat{\mu}\right)^{2}+\left(X_{2}-\hat{\mu}\right)^{2}+\cdots+\left(X_{n}-\hat{\mu}\right)^{2}}{n-1}$. Then

$$
\mathrm{E}\left[\hat{\sigma}_{\text {unbias }}^{2}\right]=\frac{n}{n-1} \cdot \mathrm{E}\left[\hat{\sigma}^{2}\right]=\sigma^{2} .
$$

