Discussion 5C

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 Pullout Balls

(a) Let X be the number that you record. Each ball is equally likely to be chosen, so

$$
\mathrm{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]=1 \times \frac{1}{4}+2 \times \frac{1}{4}+3 \times \frac{1}{4}+4 \times \frac{1}{4}=2.5
$$

As demonstrated here, the expected value of a random variable need not, and often is not, a feasible value of that random variable (there is no outcome ω for which $X(\omega)=2.5$).
(b) Let Y be the product of two numbers that you pull out. Then

$$
\mathrm{E}[Y]=\frac{1}{\binom{4}{2}}(1 \cdot 2+1 \cdot 3+1 \cdot 4+2 \cdot 3+2 \cdot 4+3 \cdot 4)=\frac{2+3+4+6+8+12}{6}=\frac{35}{6}
$$

2 Number Game

(a) S is a (discrete) uniform random variable between 0 and 100 , so its expectation is $\frac{\sum_{i=0}^{100} i}{101}=50$.
(b) If $S=s$, we know that V will be uniformly distributed between s and 100 . Similar to the previous part, this gives us that $\mathrm{E}[V \mid S=s]=\frac{s+100}{2}$.
(c) With the law of total expectation, we have that

$$
\begin{aligned}
\mathrm{E}[V] & =\sum_{s=0}^{100} \mathrm{E}[V \mid S=s] \cdot \operatorname{Pr}[S=s] \\
& =\sum_{s=0}^{100} \frac{s+100}{2} \cdot \frac{1}{101} \\
& =\frac{1}{202}\left(\sum_{s=0}^{100} s+\sum_{s=0}^{100} 100\right)
\end{aligned}
$$

The first summation comes out to $\frac{100(100+1)}{2}=50 \cdot 101$; the second summation is just adding 100 to itself 101 times, so it comes out to $100 \cdot 101$. Plugging these values in, we get $\mathrm{E}[V]=75$.

3 Linearity

(a) Let A_{i} be the indicator you win the i th time you play game A and B_{i} be the same for game B . The expected value of A_{i} and B_{i} are

$$
\begin{aligned}
& \mathrm{E}\left[A_{i}\right]=1 \cdot \frac{1}{3}+0 \cdot \frac{2}{3}=\frac{1}{3} \\
& \mathrm{E}\left[B_{i}\right]=1 \cdot \frac{1}{5}+0 \cdot \frac{4}{5}=\frac{1}{5}
\end{aligned}
$$

Then the expected total number of tickets you receive, by linearity of expectation, is

$$
3 \mathrm{E}\left[A_{1}\right]+\cdots+3 \mathrm{E}\left[A_{10}\right]+4 \mathrm{E}\left[B_{1}\right]+\cdots+4 \mathrm{E}\left[B_{20}\right]=10\left(3 \cdot \frac{1}{3}\right)+20\left(4 \cdot \frac{1}{5}\right)=26
$$

Note that $10\left(3 \cdot \frac{1}{3}\right)$ and $20\left(4 \cdot \frac{1}{5}\right)$ matches the expression directly gotten using the expected value of a binomial random variable.
(b) There are $1,000,000-4+1=999,997$ places where "book" can appear, each with a (non-independent) probability of $1 / 26^{4}$ of happening. If A is the random variable that tells how many times "book" appears, and A_{i} is the indicator variable that is 1 if "book" appears starting at the i th letter, then

$$
\begin{aligned}
\mathrm{E}[A] & =\mathrm{E}\left[A_{1}+\cdots+A_{999,997}\right] \\
& =\mathrm{E}\left[A_{1}\right]+\cdots+\mathrm{E}\left[A_{999,997}\right] \\
& =\frac{999,997}{26^{4}} \approx 2.19 .
\end{aligned}
$$

4 Number of Ones

Solution using the self-referencing trick. Let X be the number of ones we see until we see a 6 . Let r_{1}, r_{2}, \ldots be each roll of the die.

We know that

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[X \mid r_{1}=1\right] \cdot \operatorname{Pr}\left[r_{1}=1\right]+\mathrm{E}\left[X \mid r_{1}=6\right] \cdot \operatorname{Pr}\left[r_{1}=6\right]+\mathrm{E}\left[X \mid r_{1} \notin\{3,6\}\right] \cdot \operatorname{Pr}\left[r_{1} \notin\{3,6\}\right] \\
& =\mathrm{E}\left[X \mid r_{1}=1\right] \cdot \frac{1}{6}+\mathrm{E}\left[X \mid r_{1}=6\right] \cdot \frac{1}{6}+\mathrm{E}\left[X \mid r_{1} \notin\{3,6\}\right] \cdot \frac{2}{3} \cdot \mathrm{E}\left[X \mid r_{1} \notin\{3,6\}\right]
\end{aligned}
$$

Suppose $r_{1}=1$, we already see an 1 and we will keep rolling. The expected number of more 1 's we will see is just $\mathrm{E}[X]$. So $\mathrm{E}\left[X \mid r_{1}=1\right]=\mathrm{E}[X]+1$. If $r_{1}=6$, we will immediately stop. So $\mathrm{E}\left[X \mid r_{1}=6\right]=0$. Finally, if r_{1} is not one of these two, we basically wasted one roll, and the expected number of 1's we will see is still $\mathrm{E}[X]$. So $\mathrm{E}\left[X \mid r_{1} \notin\{1,6\}\right]=\mathrm{E}[X]$.
As a result, $\mathrm{E}[X]=(1+\mathrm{E}[X]) \cdot \frac{1}{6}+\mathrm{E}[X] \cdot \frac{2}{3}$. We can solve the equation and get $\mathrm{E}[X]=1$.
Solution using law of total probability. Below is an alternative solution which is kind of a brute force calculation. Just by looking at its length, one could already appreciate the elegance of the self-referencing trick is.
Let Y be the number of ones we see. Let N be the number of rolls we take until we get a 6 .
Let us first compute $\mathrm{E}[Y \mid N=k]$. We know that in each of our $k-1$ rolls before the k th, we necessarily roll a number in $\{1,2,3,4,5\}$. Thus, we have a $1 / 5$ chance of getting a one in each of these $k-1$ previous rolls, giving

$$
\mathrm{E}[Y \mid N=k]=\frac{1}{5}(k-1)
$$

If this is confusing, we can write Y as a sum of indicator variables, $Y=Y_{1}+Y_{2}+\cdots+Y_{k}$, where Y_{i} is 1 if we see a one on the i th roll. This means that by linearity of expectation,

$$
\mathrm{E}[Y \mid N=k]=\mathrm{E}\left[Y_{1} \mid N=k\right]+\mathrm{E}\left[Y_{2} \mid N=k\right]+\cdots+\mathrm{E}\left[Y_{k} \mid N=k\right]
$$

We know that on the k th roll, we must roll a 6 , so $\mathrm{E}\left[Y_{k}\right]=0$. Further, by symmetry, each term in this summation has the same value; this means that we have

$$
\begin{aligned}
\mathrm{E}\left[Y_{1} \mid N=k\right]+\mathrm{E}\left[Y_{2} \mid N=k\right]+\cdots+\mathrm{E}\left[Y_{k-1} \mid N=k\right] & =(k-1) \mathrm{E}\left[Y_{1} \mid N=k\right] \\
& =(k-1) \operatorname{Pr}\left[Y_{1}=1 \mid N=k\right] \\
& =(k-1) \frac{1}{5}
\end{aligned}
$$

Using the law of total expectation, we now have

$$
\begin{aligned}
\mathrm{E}[Y] & =\sum_{k=1}^{\infty} \mathrm{E}[Y \mid N=k] \operatorname{Pr}[N=k] \\
& =\sum_{k=1}^{\infty} \frac{1}{5}(k-1) \operatorname{Pr}[N=k] \\
& =\mathrm{E}\left[\frac{1}{5}(N-1)\right] \\
& =\frac{1}{5}(\mathrm{E}[N]-1)
\end{aligned}
$$

Note the expected number of rolls until we roll a 6 is $\mathrm{E}[N]=6$:

$$
=\frac{1}{5}(6-1)=1
$$

Alternatively, we can use iterated expectation, along with the fact that $\mathrm{E}[Y \mid N]=\frac{1}{5}(N-1)$, to give

$$
\begin{aligned}
\mathrm{E}[Y] & =\mathrm{E}[\mathrm{E}[Y \mid N]] \\
& =\mathrm{E} \frac{1}{5}(N-1) \\
& =\frac{1}{5}(\mathrm{E}[N]-1) \\
& =\frac{1}{5}(6-1)=1
\end{aligned}
$$

