Discussion 5B

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 Conditional Probability

(a) Let R be the event that it rains on a given day and W be the event that a given day is windy. We are given $\operatorname{Pr}(R \mid W)=0.3, \operatorname{Pr}(R \mid \bar{W})=0.8$ and $\operatorname{Pr}(W)=0.2$. Then probability that a given day is both rainy and windy is $\operatorname{Pr}(R \cap W)=\operatorname{Pr}(R \mid W) \operatorname{Pr}(W)=0.3 \times 0.2=0.06$.
(b) Probability that it rains on a given day is $\operatorname{Pr}(R)=\operatorname{Pr}(R \mid W) \operatorname{Pr}(W)+\operatorname{Pr}(R \mid \bar{W}) \operatorname{Pr}(\bar{W})=0.3 \times 0.2+0.8 \times 0.8=0.7$.
(c) Let R_{1} and R_{2} be the events that it rained on day 1 and day 2 respectively. Since the weather on the first day doesn't affect that of the second, $\operatorname{Pr}\left(R_{1}\right)=\operatorname{Pr}\left(R_{2}\right)=\operatorname{Pr}(R)$. The required probability is then just $\operatorname{Pr}\left(R_{1} \cap \overline{R_{2}}\right)+\operatorname{Pr}\left(\overline{R_{1}} \cap R_{2}\right)=$ $\operatorname{Pr}\left(R_{1}\right) \operatorname{Pr}\left(\overline{R_{2}}\right)+\operatorname{Pr}\left(\overline{R_{1}}\right) \operatorname{Pr}\left(R_{2}\right)=2 \cdot 0.7 \cdot 0.3=0.42$. Since the weather on the first day does not affect the weather on the second day we can multiply the probabilities.

2 Random Variable

(a) The marginal distribution of X is $\operatorname{Pr}[X=0]=2 / 3, \operatorname{Pr}[X=1]=1 / 9, \operatorname{Pr}[X=2]=2 / 9$.

The marginal distribution of Y is $\operatorname{Pr}[Y=0]=4 / 9, \operatorname{Pr}[Y=1]=2 / 9, \operatorname{Pr}[Y=2]=1 / 3$.
(b) The conditional distribution of X conditioning on $Y=0$ is $\operatorname{Pr}[X=0 \mid Y=0]=3 / 4, \operatorname{Pr}[X=1 \mid Y=0]=0, \operatorname{Pr}[X=$ $2 \mid Y=0]=1 / 4$.
(c) The conditional distribution of X conditioning on $1 \leq X+Y \leq 2$ is $\operatorname{Pr}[X=0 \mid 1 \leq X+Y \leq 2]=3 / 5, \operatorname{Pr}[X=1 \mid 1 \leq$ $X+Y \leq 2]=1 / 5, \operatorname{Pr}[X=2 \mid 1 \leq X+Y \leq 2]=1 / 5$.

3 Mutually Independent Events

(a) $2 / 5$.
(b) $\operatorname{Pr}[A \cap B]=\frac{2}{5} \cdot \frac{3}{5}=\frac{6}{25}$ and $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]=\frac{2}{5}+\frac{3}{5}-\frac{6}{25}=\frac{19}{25}$.
(c) $\operatorname{Pr}[A \cap B \cap C]=\frac{2}{5} \cdot \frac{3}{5} \cdot \frac{3}{10}=\frac{9}{125}$. There are 2 ways to calculate $\operatorname{Pr}[A \cup B \cup C]$:

First: Using inclusion-exclusion, we have

$$
\begin{aligned}
\operatorname{Pr}[A \cup B \cup C] & =\operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]-\operatorname{Pr}[A \cap B]-\operatorname{Pr}[B \cap C]-\operatorname{Pr}[A \cap C]+\operatorname{Pr}[A \cap B \cap C] \\
& =\frac{2}{5}+\frac{3}{5}+\frac{3}{10}-\frac{2}{5} \cdot \frac{3}{5}-\frac{3}{5} \cdot \frac{3}{10}-\frac{2}{5} \cdot \frac{3}{10}+\frac{2}{5} \cdot \frac{3}{5} \cdot \frac{3}{10}=\frac{104}{125}
\end{aligned}
$$

Second: Using complement event, we have

$$
\operatorname{Pr}[A \cup B \cup C]=1-\operatorname{Pr}[\neg A \cap \neg B \cap \neg C]=1-\frac{3}{5} \cdot \frac{2}{5} \cdot \frac{7}{10}=\frac{104}{125}
$$

4 Working with Distributions

(a) The sample space of Y includes the values: $0,1,2,3,4,5$.

$$
\begin{aligned}
& \operatorname{Pr}(Y=0)=\frac{1}{32} \\
& \operatorname{Pr}(Y=1)=\frac{5}{32} \\
& \operatorname{Pr}(Y=2)=\frac{10}{32} \\
& \operatorname{Pr}(Y=3)=\frac{10}{32} \\
& \operatorname{Pr}(Y=4)=\frac{5}{32} \\
& \operatorname{Pr}(Y=5)=\frac{1}{32}
\end{aligned}
$$

(b) In every trial, the probability that the value observed is less than 3 is $1 / 3$. Therefore, we can think of each trial as a Bernoulli experiment where the success probability, $p=1 / 3$, and we therefore get that N is a Geometric random variable.

Thus the probabilities can be expressed as:

$$
\operatorname{Pr}(N=k)=\frac{1}{3}\left(\frac{2}{3}\right)^{k-1}
$$

