
Discussion 4A

CS 70, Summer 2024

This content is protected and may not be shared, uploaded, or distributed.

1 Euclidean Algorithm for Polynomials

(a) Let f = gcd(p, q). Then f | p and f | q, so we have that p = fk and q = fj for some polynomials k and j.

We want to show that for some nonzero constant c, cf | p and cf | m. That is, we must show that p = cfℓ and q = cfm
for some polynomial ℓ and m.

Let ℓ = c−1k and m = c−1j; the resulting ℓ and m are still polynomials since we are scaling k and j by a finite constant.

Then,
p = cfℓ = cfc−1k = fk and q = cfm = cfc−1j = fj

We have shown that p = cfℓ and q = cfm, as desired. So the polynomial cf is also a greatest common divisor of p and
q.

(b) We will use the Euclidean algorithm and the division algorithm to show that gcd(x3,x2 + 1) = 1.

gcd(x3,x2 + 1) = gcd(x2 + 1,−x) −x = 1× x3 − x× (x2 + 1)

= gcd(−x,1) 1 = 1× (x2 + 1)− (−x)× (−x)

= gcd(1,0) 0 = 1× (−x)− (−x)× 1

= 1.

(c) In the same way we used the Euclidean algorithm for integer outputs, we start with the penultimate equation and work
our way back.

1 = 1× (x2 + 1) + x× (−x)

= 1× (x2 + 1) + x× (x3 − x× (x2 + 1))

= x× (x3) + (1− x2)(1 + x2).

So for any x, a(x) = x and b(x) = 1− x2.

(d) The following must hold for every x.
p(x)x3 ≡ 1 (mod x2 + 1).

By part (c), we know that
a(x)x3 ≡ 1 (mod x2 + 1).

Therefore, we have that

p(x)x3 ≡ 1 (mod x2 + 1)

p(x)x3a(x) ≡ a(x) (mod x2 + 1)

p(x) ≡ x (mod x2 + 1).

That is, p(x) is x more than any multiple of x2 + 1. Of course p(x) = x works, but we know that deg p = 2. Therefore
we take the first nonzero multiple: for all x,

p(x) = 1(x2 + 1) + x = x2 + x+ 1.

By the construction of p, the remainder when divided by x2 + 1 is 1. However, p(x) is a degree 2 polynomial, so we
want to find a polynomial that is x more than some multiple of x2 + 1.

If we pick the first nonzero multiple, p(x) = x2 + 1 + x = x2 + x+ 1.

2 Polynomial Potpourri

(a) (i) The minimum number of roots for f + g could be 0 if f and g both have no roots. As an example, let f = x2 + 1
and g = 2x2 +3, f + g will have no roots. However, if the highest degree of f + g is odd, it has to cross the x-axis
at least once, meaning that the minimum number of roots for odd degree polynomials is 1.

The maximum number of roots is max(df , dg). The one exception to this expression is if f = −g. In that case,
f + g = 0, so the polynomial has an infinite number of roots!

(ii) Again, the minimum number of roots for f · g would be 0 if f and g both have no roots. The maximum number
of roots would be df + dg because f · g is of degree df + dg.

(iii) Once again, the minimum number of roots for f/g would be 0 if f and g both have no roots. The maximum
number of roots would be df − dg because if f/g is a polynomial, then it must be of degree df − dg.

(b) We can show this by providing a counterexample. Here are a few:

Example 1: Let f(x) = xp−1 − 1 and g(x) = x, which are both non-zero polynomials in Fp for any prime p. Their
product will be xp − x = x− x = 0 in Fp by FLT.

Example 2: To satisfy f · g = 0, all we need is (∀x ∈ S, f(x) = 0 ∨ g(x) = 0) where S = {0, . . . , p− 1}. However, this
is not equivalent to (∀x ∈ S, f(x) = 0)) ∨ (∀x ∈ S, g(x) = 0).

Example 3: We can also construct a concrete example.

Let p = 2, f(x) = 1− x, and g(x) = x.

That is,

f(0) = 1 g(0) = 0

f(1) = 0 g(1) = 1

Then f · g = 0 but neither f nor g is the zero polynomial.

(c) A degree d polynomial f(x) =
∑d

k=0 ckx
k will have d+ 1 coefficients that can take on any value {0, . . . , p− 1}.

However, there are two constraints we need to consider:

1. f(0) is a fixed value a so there is only one value for c0.

2. cd can only take on values {1, . . . , p− 1}. If cd = 0, our polynomial will not be degree d.

Hence we are left with (p− 1) · pd−1 possibilities.

(d) (i) By Lagrange interpolation,

∆0(x) =
(x− 1)(x− 4)

(0− 1)(0− 4)
mod 5 = (x− 1)(x− 4)4−1 mod 5 = 4(x− 1)(x− 4) mod 5,

∆1(x) =
(x− 0)(x− 4)

(1− 0)(1− 4)
mod 5 = x(x− 4)2−1 mod 5 = 3x(x− 4) mod 5,

∆4(x) =
(x− 0)(x− 1)

(4− 0)(4− 1)
mod 5 = x(x− 1)3−1 mod 5 = 2x(x− 1) mod 5.

Therefore

f(x) = 1∆0(x) + 2∆1(x) + 0∆4(x) mod 5

= 4(x− 1)(x− 4) + 6x(x− 4) mod 5

= −4x+ 1 mod 5.

(ii) 5 points uniquely define a polynomial of degree at most 4. We have 3, so there are are 5 · 5 = 25 polynomials of
degree at most four through these points.

3 Lagrange Interpolation in Finite Fields

(a) p = 3p−1 + 1p0 + 2p1

(b) We can construct P−1(x) by doing the following:

p−1(x) ≡
(x− 0)(x− 1)

(−1− 0)(−1− 1)

≡ (x− 0)(x− 1)

2

≡ (2)−1x(x− 1) (mod 5)

≡ 3x(x− 1) (mod 5).

(c) We can construct P0(x) by doing the following:

p0(x) ≡
(x+ 1)(x− 1)

(0 + 1)(0− 1)

≡ (x+ 1)(x− 1)

−1

≡ (−1)−1(x− 1)(x+ 1) (mod 5)

≡ 4(x− 1)(x+ 1) (mod 5).

(d) We can construct P1(x) by doing the following:

p1(x) ≡
(x+ 1)(x− 0)

(1 + 1)(1− 0)

≡ (x+ 1)(x− 0)

2

≡ (2)−1x(x+ 1) (mod 5)

≡ 3x(x+ 1) (mod 5).

(e) Using parts (a) through (d),

p(x) = 3p−1(x) + 1p0(x) + 2p1(x)

= 3 · 3x(x− 1) + 1 · 4(x− 1)(x+ 1) + 2 · 3x(x+ 1)

= 9x(x− 1) + 4(x− 1)(x+ 1) + 6x(x+ 1)

≡ 4x2 − 3x− 4 (mod 5)

≡ 4x2 + 2x+ 1 (mod 5).

Our final polynomial will be p = 4x2 + 2x+ 1.

4 Secret

(a) Create a polynomial of degree 199 and give each enclave one point. Give the Secret Keeper 200 − 100 = 100 distinct
points, so that if they collaborate with 100 enclaves, they will have a total of 200 points and can reconstruct the
polynomial. Without the Secret Keeper, the polynomial can still be recovered if all 200 enclaves come together.

Alternatively, we could have one scheme for condition (i) and another for condition (ii). We can fulfill the first
condition by creating a single polynomial of degree 199, with each enclave receiving one distinct point and evaluating
the polynomial at zero returns the combination s. For the second condition, we can create a polynomial f of degree
1 with f(0) = s, and give f(1) to the Secret Keeper. Now, we can create a second polynomial g of degree 99, with
g(0) = f(2), and give one distinct point of g to each enclave. This way, any 100 enclaves can recover g(0) = f(2), and
then can consult with the Secret Keeper to recover s = f(0) from f(1) and f(2).

(b) We’ll layer an additional round of secret-sharing onto the scheme from part (a). First, we construct a 199 degree
polynomial f , where f(0) = s and give each enclave one point ti. Then, create a degree 9 polynomial fi for each enclave
with fi(0) = ti and give each acolyte one point from fi. Again, we give the Secret Keeper 100 distinct points so the
secret combination can still be found if just 100 enclaves come together with 10 acolytes agreeing each. Without the
Secret Keeper, the polynomial can still be recovered if all acolytes from all the enclaves come together.

	Euclidean Algorithm for Polynomials
	Polynomial Potpourri
	Lagrange Interpolation in Finite Fields
	Secret

