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1 RSA Warm-Up

(a) We must have that gcd(e, (p − 1)(q − 1)) = 1 for there to exist a private key. Since p and q are both prime numbers
greater than 3, they must be odd. Then p − 1 and q − 1 are both even, so (p − 1)(q − 1) is also even. Thus,
gcd(2, (p− 1)(q − 1)) = 2 ̸= 1, which violates the gcd constraint for e.

(b) We must have that gcd(3, (p− 1)(q− 1)) = 1. So (p− 1) and (q− 1) cannot be multiples of 3, that is, (p− 1) ̸= 3k and
(q − 1) ̸= 3j for any integers k, j ∈ Z.

This means that p ̸= 3k + 1 and q ̸= 3j + 1, so p and q can only be of the form of 3k or 3k + 2. However, p and q
cannot be of the form of 3k because they must be prime.

Our condition is that p and q are prime numbers of the form 3k + 2.

(c) The public key is defined to be (N, e), where N = pq. Plugging in our values, N = 5 · 17 and e = 3, so our public key
will be (85, 3).

(d) For the RSA scheme, we must have ed ≡ 1 (mod (p− 1)(q− 1)). Plugging in our values, we want to find a d such that
3d ≡ 1 (mod 64). That is, d ≡ 3−1 (mod 64).

We can find the inverse using the extended Euclidean algorithm.

64 = 1× 64+ 0× 3 (E1)

3 = 0× 64+ 1× 3 (E2)

1 = 1× 64+ (−21)× 3 (E3 = E1 − 21E2).

Therefore 3−1 ≡ −21 (mod 64). We will use d = 3−1 mod 64 = 43 (since −21 ≡ 43 (mod 64)).

(e) To encrypt a message, we use E(x) = xe mod N . Plugging in our values, E(10) = 103 mod 85 = 65 mod 85 = 65. Our
encrypted message is 65.

(f) To decrypt a message, we use D(y) = yd mod N . Plugging in our values, we want to find D(19) = 1943 mod 85.

Since these numbers are quite large, repeat squaring is difficult. We will use the Chinese remainder theorem. From the
Chinese remainder theorem, we know that we know that for coprime values p and q, all solutions to the system

x = a (mod p)

x = b (mod q)

are unique modulo pq. In our case, p = 5 and q = 17 so let’s start by finding 1943 mod 5 and 1943 mod 17.

1943 ≡ (−1)43 (mod 5)

≡ −1 (mod 5)

≡ 4 (mod 5)

1943 ≡ 243 (mod 17)

≡ (24)10 · 23 (mod 17)

≡ 1610 · 8 (mod 17)

≡ (−1)10 · 8 (mod 17)

≡ 8 (mod 17).

Therefore we consider the following system of linear congruences.

x ≡ 4 (mod 5)

x ≡ 8 (mod 17),

created specifically because 1943 satisfies them. Then any other solution we find is equivalent to 1943 modulo 85.



The standard Chinese remainder theorem solution is

x = 4 · (17 · (17−1 mod 5)) + 8 · (5 · 5−1 mod 17)

= 4 · (17 · 3) + 8 · (5 · 7)
= 484.

We know that all solutions are congruent modulo 85, so we have that 1943 ≡ 484 ≡ 59 (mod 85).

That is, D(19) = 1943 mod 85 = 59.

2 RSA with Multiple Keys

(a) Because all public keys are generated from the same prime, they share a common factor. In particular, since p | N1

and p | N2 is the only common divisor of N1 and N2,

gcd(N1, N2) = gcd(pq1, pq2) = p.

Therefore Ewen can quickly compute p using the Euclidean algorithm. Then Ewen can find q1 = N1/p and q2 = N2/p.

Then, using the extended Euclidean algorithm, Ewen can compute d1 = e−1 mod N1 and d2 = e−1 mod N2. Finally,
she can recover

x1 = yd1
1 mod N1 x2 = yd2

2 mod N2.

(b) Ewen can no longer use idea from part (a) since the moduli are now all pairwise coprime. However, in this scheme, the
value e is the same for all public keys. Ewen sees

y1 ≡ x3 (mod N1)

y2 ≡ x3 (mod N2)

y3 ≡ x3 (mod N3).

Using the Chinese Remainder Theorem, Ewen can find a solution y to these equations. By the uniqueness of the Chinese
remainder theorem, y ≡ x3 (mod N1N2N3).

Moreover, since x < N1, x < N2, and x < N3, this means that x3 < N1N2N3. In particular, x3 mod N1N2N3 = x3. So
y mod N1N2N3 = x3 and therefore Ewen can get the original message by computing

x =
3
√
x3 = 3

√
y mod N1N2N3.

3 Concert Tickets

(a) There are only 101 possible values for Akemi’s ticket number. For each v ∈ {0, . . . , 100}, Eileen can compute E(v) =
ve mod N and see which matches with the encrypted message y.

To confirm that this works, we must show that if E(v) = y, then v = x. Suppose that E(v) = y. Then, by the definition
of the decryption function, x = D(y) = D(E(v)). But we proved that for the RSA scheme, D(E(v)) = v. So x = v, as
desired.

(b) Eileen sees y1 ≡ re mod N and y2 ≡ (rx)e mod N . If Eileen can find xe mod N , she can apply her method from (a).

Note that the second message is
y2 = (rx)e mod N = (re · xe) mod N.

If Eileen can find (re)−1 mod N , then Eileen can find xe mod N as (re)−1y2 mod N . Eileen sees y1 = re (mod N).
She can use the extended Euclidean algorithm to find y−1

1 mod N = (re)−1 mod N .

We must prove that this inverse exists. Since r is coprime to N , we know that r−1 exists modulo N . Then, by Discussion
2B Question 2(a),

(re)−1 ≡ (r−1)e (mod N),

so if r−1 exists modulo N , then so does (re)−1 modulo N .

Once Eileen has found (re)−1, she can find xe:

y2 ≡ re · xe (mod N)

(re)−1 · y2 ≡ (re)−1 · re · xe (mod N)

(re)−1 · y2 ≡ xe (mod N)

Finally, Eileen can use her approach from (a) to find x.
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