Discussion 3C

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 RSA Warm-Up

(a) We must have that $\operatorname{gcd}(e,(p-1)(q-1))=1$ for there to exist a private key. Since p and q are both prime numbers greater than 3 , they must be odd. Then $p-1$ and $q-1$ are both even, so $(p-1)(q-1)$ is also even. Thus, $\operatorname{gcd}(2,(p-1)(q-1))=2 \neq 1$, which violates the gcd constraint for e.
(b) We must have that $\operatorname{gcd}(3,(p-1)(q-1))=1$. So $(p-1)$ and $(q-1)$ cannot be multiples of 3 , that is, $(p-1) \neq 3 k$ and $(q-1) \neq 3 j$ for any integers $k, j \in \mathbb{Z}$.
This means that $p \neq 3 k+1$ and $q \neq 3 j+1$, so p and q can only be of the form of $3 k$ or $3 k+2$. However, p and q cannot be of the form of $3 k$ because they must be prime.

Our condition is that p and q are prime numbers of the form $3 k+2$.
(c) The public key is defined to be (N, e), where $N=p q$. Plugging in our values, $N=5 \cdot 17$ and $e=3$, so our public key will be $(85,3)$.
(d) For the RSA scheme, we must have $e d \equiv 1(\bmod (p-1)(q-1))$. Plugging in our values, we want to find a d such that $3 d \equiv 1(\bmod 64)$. That is, $d \equiv 3^{-1}(\bmod 64)$.
We can find the inverse using the extended Euclidean algorithm.

$$
\begin{aligned}
\mathbf{6 4} & =1 \times \mathbf{6 4}+0 \times \mathbf{3} & & \left(E_{1}\right) \\
\mathbf{3} & =0 \times \mathbf{6 4}+1 \times \mathbf{3} & & \left(E_{2}\right) \\
\mathbf{1} & =1 \times \mathbf{6 4}+(-21) \times \mathbf{3} & & \left(E_{3}=E_{1}-21 E_{2}\right) .
\end{aligned}
$$

Therefore $3^{-1} \equiv-21(\bmod 64)$. We will use $d=3^{-1} \bmod 64=43($ since $-21 \equiv 43(\bmod 64))$.
(e) To encrypt a message, we use $E(x)=x^{e} \bmod N$. Plugging in our values, $E(10)=10^{3} \bmod 85=65 \bmod 85=65$. Our encrypted message is 65 .
(f) To decrypt a message, we use $D(y)=y^{d} \bmod N$. Plugging in our values, we want to find $D(19)=19^{43} \bmod 85$.

Since these numbers are quite large, repeat squaring is difficult. We will use the Chinese remainder theorem. From the Chinese remainder theorem, we know that we know that for coprime values p and q, all solutions to the system

$$
\begin{array}{ll}
x=a & (\bmod p) \\
x=b & (\bmod q)
\end{array}
$$

are unique modulo $p q$. In our case, $p=5$ and $q=17$ so let's start by finding $19^{43} \bmod 5$ and $19^{43} \bmod 17$.

$$
\begin{array}{rlrl}
19^{43} & \equiv(-1)^{43} & & (\bmod 5) \\
& \equiv-1 & & (\bmod 5) \\
& \equiv 4 & & (\bmod 5) \\
19^{43} & \equiv 2^{43} & & (\bmod 17) \\
& \equiv\left(2^{4}\right)^{10} \cdot 2^{3} & & (\bmod 17) \\
& \equiv 16^{10} \cdot 8 & & (\bmod 17) \\
& \equiv(-1)^{10} \cdot 8 & & (\bmod 17) \\
& \equiv 8 \quad(\bmod 17) . &
\end{array}
$$

Therefore we consider the following system of linear congruences.

$$
\begin{array}{ll}
x \equiv 4 & (\bmod 5) \\
x \equiv 8 & (\bmod 17)
\end{array}
$$

created specifically because 19^{43} satisfies them. Then any other solution we find is equivalent to 19^{43} modulo 85 .

The standard Chinese remainder theorem solution is

$$
\begin{aligned}
x & =4 \cdot\left(17 \cdot\left(17^{-1} \bmod 5\right)\right)+8 \cdot\left(5 \cdot 5^{-1} \bmod 17\right) \\
& =4 \cdot(17 \cdot 3)+8 \cdot(5 \cdot 7) \\
& =484
\end{aligned}
$$

We know that all solutions are congruent modulo 85 , so we have that $19^{43} \equiv 484 \equiv 59(\bmod 85)$.
That is, $D(19)=19^{43} \bmod 85=59$.

2 RSA with Multiple Keys

(a) Because all public keys are generated from the same prime, they share a common factor. In particular, since $p \mid N_{1}$ and $p \mid N_{2}$ is the only common divisor of N_{1} and N_{2},

$$
\operatorname{gcd}\left(N_{1}, N_{2}\right)=\operatorname{gcd}\left(p q_{1}, p q_{2}\right)=p
$$

Therefore Ewen can quickly compute p using the Euclidean algorithm. Then Ewen can find $q_{1}=N_{1} / p$ and $q_{2}=N_{2} / p$.
Then, using the extended Euclidean algorithm, Ewen can compute $d_{1}=e^{-1} \bmod N_{1}$ and $d_{2}=e^{-1} \bmod N_{2}$. Finally, she can recover

$$
x_{1}=y_{1}^{d_{1}} \bmod N_{1} \quad x_{2}=y_{2}^{d_{2}} \bmod N_{2}
$$

(b) Ewen can no longer use idea from part (a) since the moduli are now all pairwise coprime. However, in this scheme, the value e is the same for all public keys. Ewen sees

$$
\begin{aligned}
& y_{1} \equiv x^{3} \quad\left(\bmod N_{1}\right) \\
& y_{2} \equiv x^{3} \quad\left(\bmod N_{2}\right) \\
& y_{3} \equiv x^{3} \quad\left(\bmod N_{3}\right)
\end{aligned}
$$

Using the Chinese Remainder Theorem, Ewen can find a solution y to these equations. By the uniqueness of the Chinese remainder theorem, $y \equiv x^{3}\left(\bmod N_{1} N_{2} N_{3}\right)$.
Moreover, since $x<N_{1}, x<N_{2}$, and $x<N_{3}$, this means that $x^{3}<N_{1} N_{2} N_{3}$. In particular, $x^{3} \bmod N_{1} N_{2} N_{3}=x^{3}$. So $y \bmod N_{1} N_{2} N_{3}=x^{3}$ and therefore Ewen can get the original message by computing

$$
x=\sqrt[3]{x^{3}}=\sqrt[3]{y \bmod N_{1} N_{2} N_{3}}
$$

3 Concert Tickets

(a) There are only 101 possible values for Akemi's ticket number. For each $v \in\{0, \ldots, 100\}$, Eileen can compute $E(v)=$ $v^{e} \bmod N$ and see which matches with the encrypted message y.
To confirm that this works, we must show that if $E(v)=y$, then $v=x$. Suppose that $E(v)=y$. Then, by the definition of the decryption function, $x=D(y)=D(E(v))$. But we proved that for the RSA scheme, $D(E(v))=v$. So $x=v$, as desired.
(b) Eileen sees $y_{1} \equiv r^{e} \bmod N$ and $y_{2} \equiv(r x)^{e} \bmod N$. If Eileen can find $x^{e} \bmod N$, she can apply her method from (a).

Note that the second message is

$$
y_{2}=(r x)^{e} \bmod N=\left(r^{e} \cdot x^{e}\right) \bmod N .
$$

If Eileen can find $\left(r^{e}\right)^{-1} \bmod N$, then Eileen can find $x^{e} \bmod N$ as $\left(r^{e}\right)^{-1} y_{2} \bmod N$. Eileen sees $y_{1}=r^{e}(\bmod N)$. She can use the extended Euclidean algorithm to find $y_{1}^{-1} \bmod N=\left(r^{e}\right)^{-1} \bmod N$.
We must prove that this inverse exists. Since r is coprime to N, we know that r^{-1} exists modulo N. Then, by Discussion 2B Question 2(a),

$$
\left(r^{e}\right)^{-1} \equiv\left(r^{-1}\right)^{e} \quad(\bmod N)
$$

so if r^{-1} exists modulo N, then so does $\left(r^{e}\right)^{-1}$ modulo N.
Once Eileen has found $\left(r^{e}\right)^{-1}$, she can find x^{e} :

$$
\begin{array}{rlrl}
y_{2} & \equiv r^{e} \cdot x^{e} & & (\bmod N) \\
\left(r^{e}\right)^{-1} \cdot y_{2} & \equiv\left(r^{e}\right)^{-1} \cdot r^{e} \cdot x^{e} & (\bmod N) \\
\left(r^{e}\right)^{-1} \cdot y_{2} & \equiv x^{e} & & (\bmod N)
\end{array}
$$

Finally, Eileen can use her approach from (a) to find x.

