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1 Euclidean Identities

(a) We show that a, b and b, r share the same common divisors. We will show that

d | a ∧ d | b ⇐⇒ d | b ∧ d | r.

Suppose d | a and d | b. Then by Lemma 1 from Note 7, d | (a− bq). That is, d | r.

Now suppose that d | b and d | r. Then by Lemma 1 from Note 7, d | (bq + r). So d | a.

(b) (i) Without loss of generality, suppose that a ̸= 0. Then either a > 0 or a < 0.

(1) If a > 0, then a · 1 + b · 0 > 0 and so a ∈ S.

(2) If a < 0, then −a · 1 + b · 0 > 0 and so −a ∈ S.

In either case, there is an element in S and so S ̸= ∅.

(ii) Suppose that r = a mod d ̸= 0. By the division algorithm, there exists q ∈ Z such that a = qd+r. So r = a−qd > 0.
But then, since d ∈ S, there are x, y ∈ Z such that d = ax+ by. Therefore

r = a− dq

= a(1) + (ax+ by)q

= a(1− xq) + b(yq).

So r ∈ S. Moreover, by the division algorithm, r < d. This is a contradiction, since d was the smallest element of
S. Therefore in fact r = 0 and so d | a.

The same proof shows that d | b.

(iii) We will show that c | d. Since c | a and c | b, we know a = cj and b = ck for some j, k ∈ Z. Then

d = ax+ by

= cjx+ cky

= c(jx+ ky).

Since j, k, x, y ∈ Z, so is jx+ ky. Therefore c | d. So c ≤ d.

(iv) We have shown in (ii) that d | a and d | b, and we have shown in (iii) that for any other c such that c | a and
c | b, c ≤ d. So d is the greatest common divisor of a and b.

Therefore we have shown that there exist x, y ∈ Z such that

ax+ by = gcd(a, b).

2 The Extended Euclidean Algorithm

(a) Taking the equation 54a+ 17b = 1 with respect to the modulus 54, we have that

54a+ 17b ≡ 1 (mod 54)

17b ≡ 1 (mod 54).

By definition, b ≡ 17−1 (mod 54). That is, b is an inverse of 17 modulo 54.

(b) We get

gcd(54,17) = gcd(17,3) 3 = 1× 54− 3× 17

= gcd(3,2) 2 = 1× 17− 5× 3

= gcd(2,1) 1 = 1× 3− 1× 2

= gcd(1,0) [0 = 1× 2− 2× 1]

= 1.



(c) We get

1 = 1× 3+ (−1)× 2

= 1× 3+ (−1)× (1× 17− 5× 3)

= (−1)× 17+ 6× 3

= (−1)× 17+ 6× (1× 54− 3× 17)

= 6× 54+ (−19)× 17

(d) By parts (c) and (a), we know that −19 is a multiplicative inverse of 17 modulo 54. To get it as a remainder modulo
54, we use the fact that a ≡ m− a (mod m):

−19 ≡ 54− 19 ≡ 35 (mod 54).

So 35 = 17−1 mod 54.

(e) Use the equations from (b).

3 = 1× 54− 3× 17 (E3 = E1 − 3× E2)

2 = −5× 54+ 16× 17 (E4 = E2 − 5× E3)

1 = 6× 54− 19× 17 (E5 = E3 − 1× E4).

(f) We get once again that −19 is a multiplicative inverse of 17 modulo 54. This yields the same answer that 35 =
17−1 mod 54.

(g) Using the Euclidean algorithm,

gcd(39,17) = gcd(17,5) 39 = 2× 17+ 5 5 = 1× 39− 2× 17

= gcd(5,2) 17 = 3× 5+ 2 2 = 1× 17− 3× 5

= gcd(2,1) 5 = 2× 2+ 1 1 = 1× 5− 2× 2

= gcd(1,0) 2 = 2× 1+ 0.

Now we iteratively substitute into our last equation to get every bolded term in terms of 17 and 39.

1 = 1× 5− 2× 2

= 1× 5− 2× (1× 17− 3× 5)

= (−2)× 17+ 7× 5

= (−2)× 17+ 7× (1× 39− 2× 17)

= 7× 39+ (−16)× 17.

Therefore −16 is an inverse of 17 modulo 39. In particular, since −16 ≡ 23 (mod 39), we have that 23 = 17−1 mod 39.

We can instead use the iterative approach by using the equations all the way on the right-hand side of our Euclidean
algorithm’s output.

39 = 1× 39+ 0× 17 (E1)

17 = 0× 39+ 1× 17 (E2)

5 = 1× 39+ (−2)× 17 (E3 = E1 − 2E2)

2 = (−3)× 39+ 7× 17 (E4 = E2 − 3E3)

1 = 7× 39− 16× 17 (E5 = E3 − 2E4).

3 Modular Inverses

(a) Since 3 · 5 ≡ 15 ≡ 5 (mod 10), 3 is not an inverse of 5 modulo 10.

(b) Since 3 · 5 ≡ 15 ≡ 1 (mod 14), 3 is an inverse of 5 modulo 14.



(c) Suppose that for some x ∈ Z, 4x ≡ 1 (mod 8). Then by Bezout’s identity, there are integers x, y ∈ Z such that

1 = 4x+ 8y

1 = 4(x+ 2y)

1

4
= x+ 2y.

This is a contradiction, since x+ 2y ∈ Z.

(d) Suppose for contradiction a has an inverse modulo m and that gcd(a,m) = d > 1. Then d | a and d | m, so a = dj and
m = dk for some j, k ∈ Z.

Let x ∈ Z be the inverse of a modulo m. Then ax ≡ 1 (mod m), so ax+my = 1 for some y ∈ Z. Then

1 = ax+my

1 = djx+ dky

1 = d(jx+ ky).

So d | 1. But only 1 divides 1, and d > 1. So it must instead be the case that d = 1.

(e) We show that a(x+m) ≡ 1 (mod m).

a(x+m) ≡ ax+ am (mod m)

≡ 1 + 0 (mod m)

≡ 1. (mod m)

So x+m is an inverse modulo m.

(f) Since x is an inverse of a modulo m, ax ≡ 1 (mod m) and ya ≡ 1 (mod m). Then

ax ≡ 1 (mod m)

yax ≡ y (mod m)

x ≡ y (mod m).
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