Discussion 3A

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 Euclidean Identities

(a) We show that a, b and b, r share the same common divisors. We will show that

$$
d|a \wedge d| b \Longleftrightarrow d|b \wedge d| r .
$$

Suppose $d \mid a$ and $d \mid b$. Then by Lemma 1 from Note 7, $d \mid(a-b q)$. That is, $d \mid r$.
Now suppose that $d \mid b$ and $d \mid r$. Then by Lemma 1 from Note $7, d \mid(b q+r)$. So $d \mid a$.
(b) (i) Without loss of generality, suppose that $a \neq 0$. Then either $a>0$ or $a<0$.
(1) If $a>0$, then $a \cdot 1+b \cdot 0>0$ and so $a \in S$.
(2) If $a<0$, then $-a \cdot 1+b \cdot 0>0$ and so $-a \in S$.

In either case, there is an element in S and so $S \neq \varnothing$.
(ii) Suppose that $r=a \bmod d \neq 0$. By the division algorithm, there exists $q \in \mathbb{Z}$ such that $a=q d+r$. So $r=a-q d>0$. But then, since $d \in S$, there are $x, y \in \mathbb{Z}$ such that $d=a x+b y$. Therefore

$$
\begin{aligned}
r=a-d q & \\
& =a(1)+(a x+b y) q \\
& =a(1-x q)+b(y q)
\end{aligned}
$$

So $r \in S$. Moreover, by the division algorithm, $r<d$. This is a contradiction, since d was the smallest element of S. Therefore in fact $r=0$ and so $d \mid a$.
The same proof shows that $d \mid b$.
(iii) We will show that $c \mid d$. Since $c \mid a$ and $c \mid b$, we know $a=c j$ and $b=c k$ for some $j, k \in \mathbb{Z}$. Then

$$
\begin{aligned}
d & =a x+b y \\
& =c j x+c k y \\
& =c(j x+k y) .
\end{aligned}
$$

Since $j, k, x, y \in \mathbb{Z}$, so is $j x+k y$. Therefore $c \mid d$. So $c \leq d$.
(iv) We have shown in (ii) that $d \mid a$ and $d \mid b$, and we have shown in (iii) that for any other c such that $c \mid a$ and $c \mid b, c \leq d$. So d is the greatest common divisor of a and b.
Therefore we have shown that there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

2 The Extended Euclidean Algorithm

(a) Taking the equation $54 a+17 b=1$ with respect to the modulus 54 , we have that

$$
\begin{aligned}
54 a+17 b & \equiv 1 \quad(\bmod 54) \\
17 b & \equiv 1 \quad(\bmod 54)
\end{aligned}
$$

By definition, $b \equiv 17^{-1}(\bmod 54)$. That is, b is an inverse of 17 modulo 54 .
(b) We get

$$
\begin{aligned}
\operatorname{gcd}(\mathbf{5 4}, \mathbf{1 7}) & =\operatorname{gcd}(\mathbf{1 7}, \mathbf{3}) \\
& =\operatorname{gcd}(\mathbf{3}, \mathbf{2}) \\
& =\operatorname{gcd}(\mathbf{2}, \mathbf{1}) \\
& =\operatorname{gcd}(\mathbf{1}, \mathbf{0}) \\
& =1 .
\end{aligned}
$$

$$
\mathbf{3}=1 \times \mathbf{5 4}-3 \times \mathbf{1 7}
$$

$$
\mathbf{2}=1 \times \mathbf{1 7}-5 \times \mathbf{3}
$$

$$
\mathbf{1}=1 \times \mathbf{3}-1 \times \mathbf{2}
$$

$$
[\mathbf{0}=1 \times \mathbf{2}-2 \times \mathbf{1}]
$$

(c) We get

$$
\begin{aligned}
\mathbf{1} & =1 \times \mathbf{3}+(-1) \times \mathbf{2} \\
& =1 \times \mathbf{3}+(-1) \times(1 \times \mathbf{1 7}-5 \times \mathbf{3}) \\
& =(-1) \times \mathbf{1 7}+6 \times \mathbf{3} \\
& =(-1) \times \mathbf{1 7}+6 \times(1 \times \mathbf{5 4}-3 \times \mathbf{1 7}) \\
& =6 \times \mathbf{5 4}+(-19) \times \mathbf{1 7}
\end{aligned}
$$

(d) By parts (c) and (a), we know that -19 is a multiplicative inverse of 17 modulo 54. To get it as a remainder modulo 54 , we use the fact that $a \equiv m-a(\bmod m)$:

$$
-19 \equiv 54-19 \equiv 35 \quad(\bmod 54) .
$$

So $35=17^{-1} \bmod 54$.
(e) Use the equations from (b).

$$
\begin{array}{ll}
\mathbf{3}=1 \times \mathbf{5 4 - 3 \times \mathbf { 1 7 }} & \left(E_{3}=E_{1}-3 \times E_{2}\right) \\
\mathbf{2}=-5 \times \mathbf{5 4}+16 \times \mathbf{1 7} & \left(E_{4}=E_{2}-5 \times E_{3}\right) \\
\mathbf{1}=6 \times \mathbf{5 4 - 1 9 \times \mathbf { 1 7 }} & \left(E_{5}=E_{3}-1 \times E_{4}\right) .
\end{array}
$$

(f) We get once again that -19 is a multiplicative inverse of 17 modulo 54 . This yields the same answer that $35=$ $17^{-1} \bmod 54$.
(g) Using the Euclidean algorithm,

$$
\begin{array}{rlrlr}
\operatorname{gcd}(\mathbf{3 9}, \mathbf{1 7}) & =\operatorname{gcd}(\mathbf{1 7}, \mathbf{5}) & \mathbf{3 9} & =2 \times \mathbf{1 7}+\mathbf{5} & \\
& =\operatorname{gcd}(\mathbf{5}, \mathbf{2}) & \mathbf{1 7} & =3 \times \mathbf{5}+\mathbf{2} & \\
& =\operatorname{gcd}(\mathbf{2}, \mathbf{1}) & & \mathbf{5} & =2 \times \mathbf{3}+2 \times \mathbf{1}+\mathbf{1 7} \\
& =\operatorname{gcd}(\mathbf{1}, \mathbf{0}) & & \mathbf{1}=1 \times \mathbf{5}-2 \times \mathbf{2} \\
& & \mathbf{2}=2 \times \mathbf{1}+\mathbf{0} . & &
\end{array}
$$

Now we iteratively substitute into our last equation to get every bolded term in terms of $\mathbf{1 7}$ and $\mathbf{3 9}$.

$$
\begin{aligned}
\mathbf{1} & =1 \times \mathbf{5}-2 \times \mathbf{2} \\
& =1 \times \mathbf{5}-2 \times(1 \times \mathbf{1 7}-3 \times \mathbf{5}) \\
& =(-2) \times \mathbf{1 7}+7 \times \mathbf{5} \\
& =(-2) \times \mathbf{1 7}+7 \times(1 \times \mathbf{3 9 - 2} \times \mathbf{1 7}) \\
& =7 \times \mathbf{3 9}+(-16) \times \mathbf{1 7}
\end{aligned}
$$

Therefore -16 is an inverse of 17 modulo 39. In particular, since $-16 \equiv 23(\bmod 39)$, we have that $23=17^{-1} \bmod 39$. We can instead use the iterative approach by using the equations all the way on the right-hand side of our Euclidean algorithm's output.

$$
\begin{aligned}
\mathbf{3 9} & =1 \times \mathbf{3 9}+0 \times \mathbf{1 7} & & \left(E_{1}\right) \\
\mathbf{1 7} & =0 \times \mathbf{3 9 + 1} \times \mathbf{1 7} & & \left(E_{2}\right) \\
\mathbf{5} & =1 \times \mathbf{3 9}+(-2) \times \mathbf{1 7} & & \left(E_{3}=E_{1}-2 E_{2}\right) \\
\mathbf{2} & =(-3) \times \mathbf{3 9}+7 \times \mathbf{1 7} & & \left(E_{4}=E_{2}-3 E_{3}\right) \\
\mathbf{1} & =7 \times \mathbf{3 9}-16 \times \mathbf{1 7} & & \left(E_{5}=E_{3}-2 E_{4}\right) .
\end{aligned}
$$

3 Modular Inverses

(a) Since $3 \cdot 5 \equiv 15 \equiv 5(\bmod 10), 3$ is not an inverse of 5 modulo 10 .
(b) Since $3 \cdot 5 \equiv 15 \equiv 1(\bmod 14), 3$ is an inverse of 5 modulo 14 .
(c) Suppose that for some $x \in \mathbb{Z}, 4 x \equiv 1(\bmod 8)$. Then by Bezout's identity, there are integers $x, y \in \mathbb{Z}$ such that

$$
\begin{aligned}
& 1=4 x+8 y \\
& 1=4(x+2 y) \\
& \frac{1}{4}=x+2 y
\end{aligned}
$$

This is a contradiction, since $x+2 y \in \mathbb{Z}$.
(d) Suppose for contradiction a has an inverse modulo m and that $\operatorname{gcd}(a, m)=d>1$. Then $d \mid a$ and $d \mid m$, so $a=d j$ and $m=d k$ for some $j, k \in \mathbb{Z}$.

Let $x \in \mathbb{Z}$ be the inverse of a modulo m. Then $a x \equiv 1(\bmod m)$, so $a x+m y=1$ for some $y \in \mathbb{Z}$. Then

$$
\begin{aligned}
& 1=a x+m y \\
& 1=d j x+d k y \\
& 1=d(j x+k y)
\end{aligned}
$$

So $d \mid 1$. But only 1 divides 1 , and $d>1$. So it must instead be the case that $d=1$.
(e) We show that $a(x+m) \equiv 1(\bmod m)$.

$$
\begin{aligned}
a(x+m) & \equiv a x+a m & & (\bmod m) \\
& \equiv 1+0 & & (\bmod m) \\
& \equiv 1 . & & (\bmod m)
\end{aligned}
$$

So $x+m$ is an inverse modulo m.
(f) Since x is an inverse of a modulo $m, a x \equiv 1(\bmod m)$ and $y a \equiv 1(\bmod m)$. Then

$$
\begin{aligned}
a x & \equiv 1 \\
y a x & \equiv y \quad(\bmod m) \\
x & \equiv y \quad(\bmod m) \\
& (\bmod m) .
\end{aligned}
$$

