Discussion 1C

CS 70, Summer 2024

1 The Triangle Inequality

You may remember from a previous math class the triangle inequality, which states that for real numbers x_{1} and x_{2},

$$
\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right| .
$$

In this question, we will generalize the triangle inequality using mathematical induction to prove that

$$
\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| .
$$

(a) State the base case.
(b) State the induction hypothesis.
(c) Show the induction step.

2 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that for any positive integer n, we can write

$$
n=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

for some $k \in \mathbb{N}$ and $c_{i} \in\{0,1\}$ for all $i \leq k$.
(Hint: in the induction step, consider the case where $n+1$ is even and the case where $n+1$ is odd.)

3 Stones

Charlize and Beomgyu like play a game involving a pile of n stones. They alternate taking turns removing stones from the pile. On each turn, the player removes either one or two stones from the pile. The last player to make a turn loses.

Charlize makes the first move.
(a) A common technique for problem-solving and proof-writing is to work with small examples. In this case, that's when n is small.

Determine who would win if there are $n=1$ stones in the pile. Do the same for when there are $n=2,3,4$ stones.
(b) After working through a few examples, we try to catch any patterns to make a conjecture.

For the three cases where $n=3 k+1, n=3 k+2$, and $n=3 k+3$, conjecture who you think would win the game.
(c) Prove your conjecture.

4 Make It Stronger

Suppose that the sequence a_{1}, a_{2}, \ldots is defined by $a_{1}=1$ and $a_{n+1}=3 a_{n}^{2}$ for $n \geq 1$. We are interested in proving the claim that

$$
a_{n} \leq 3^{\left(2^{n}\right)}
$$

for every positive integer n.
(a) Consider a proof by induction with the induction hypothesis $a_{n} \leq 3^{\left(2^{n}\right)}$. Work through the details of the induction proof to demonstrate that this induction hypothesis will not work.
(b) Prove instead that $a_{n} \leq 3^{\left(2^{n}-1\right)}$.
(c) Use the result from part (b) to prove the original claim.

