Discussion 1C

CS 70, Summer 2024
This content is protected and may not be shared, uploaded, or distributed.

1 The Triangle Inequality

(a) Base case. By the triangle inequality, $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$.
(b) Induction hypothesis. For some $n \geq 2$, suppose that

$$
\left|x_{1}+x_{2}+\ldots+x_{n-1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|
$$

holds.
(c) Induction step. Let $x_{1}, \ldots, x_{n+1} \in \mathbb{R}$. Then

$$
\begin{array}{rlr}
\left|x_{1}+\ldots+x_{n+1}\right| & =\left|\left(x_{1}+\ldots+x_{n}\right)+x_{n+1}\right| & \\
& \leq\left|x_{1}+\ldots+x_{n}\right|+\left|x_{n+1}\right| & \text { (triangle inequality) } \\
& \leq\left|x_{1}\right|+\ldots+\left|x_{n}\right|+\left|x_{n+1}\right| . & \text { (induction hypothesis) }
\end{array}
$$

2 Binary Numbers

By strong induction on n.
Base case. $n=1=1 \cdot 2^{0}$.

Induction case.

Induction hypothesis. Suppose that for all $1 \leq m \leq n$, we can write k in binary.
Induction step. Consider $n+1$. We consider the two cases where $n+1$ is even and $n+1$ is odd.
(1) $n+1$ is even. Then $(n+1) / 2 \leq n$ is an integer. By the induction hypothesis, we can write $(n+1) / 2$ in binary. That is, there exist $b_{0}, \ldots, b_{k} \in\{0,1\}$ such that

$$
(n+1) / 2=b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+b_{0} \cdot 2^{0}
$$

Then

$$
\begin{aligned}
(n+1) / 2 & =b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+c_{0} \cdot 2^{0} \\
n+1 & =2\left(b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+b_{0} \cdot 2^{0}\right) \\
& =b_{k} \cdot 2^{k+1}+b_{k-1} \cdot 2^{k}+\ldots+b_{1} \cdot 2^{2}+b_{0} \cdot 2^{1} \\
& =c_{k+1} \cdot 2^{k+1}+c_{k} \cdot 2^{k}+\ldots+c_{2} \cdot 2^{2}+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0},
\end{aligned}
$$

where $c_{j}=d_{j-1}$ for $1 \leq j \leq k+1$ and $c_{0}=0$.
(2) $n+1$ is odd. Then n is even and by the induction hypothesis, there exist $b_{0}, \ldots, b_{k} \in\{0,1\}$ such that

$$
n=b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+b_{0} \cdot 2^{0}
$$

We claim that $b_{0}=0$. In particular,

$$
\begin{aligned}
n & =b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+b_{0} \cdot 2^{0} \\
& =2\left(b_{k} \cdot 2^{k-1}+b_{k-1} \cdot 2^{k-2}+\ldots+b_{1} \cdot 2^{0}\right)+b_{0}
\end{aligned}
$$

If $b_{0}=1$, then n is of the form $2 \ell+1$ for some $\ell \in \mathbb{Z}$, and is therefore odd. This is a contradiction, so it must be that $b_{0}=0$. Then

$$
\begin{aligned}
n & =b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+0 \cdot 2^{0} \\
n+1 & =b_{k} \cdot 2^{k}+b_{k-1} \cdot 2^{k-1}+\ldots+b_{1} \cdot 2^{1}+1 \cdot 2^{0} \\
& =c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\ldots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
\end{aligned}
$$

where $c_{j}=b_{j}$ for $1 \leq j \leq k$ and $c_{0}=1$.
By the principle of mathematical induction, we have shown the claim.

3 Stones

(a) When $n=1$ or $n=4$, Beomgyu, the next player, wins. When $n=2$ or $n=3$, Charlize, the current player wins.
(b) We conjecture that when $n=3 k+1$, Beomgyu, the next player, wins, and that when $n=3 k+2$ or $n=3 k+3$, Charlize, the current player, wins.
(c) We will prove the stronger claim that when $n=3 k+2$ or $n=3 k+3$, the current player wins, and that when $n=3 k+1$, the next player wins. We use strong induction.

Base case. $n=1$. By part (a), the next player, Beomgyu, wins.

Induction case.

Induction hypothesis. Suppose that for each $m \in\{1, \ldots, n\}$, the claim is true for a pile with m stones.
Induction step. Consider a pile with $n+1$ stones. There are three cases. Either $n+1=3 k+1, n+1=3 k+2$, or $n+1=3 k+3$.
(1) $n+1=3 k+1$. If the current player removes one stone from the pile, there will remain $n=3 k=3(k-1)+3$ stones, and the opponent becomes the current player. By the induction hypothesis, the opponent wins.

If the current player removes two stones from the pile, there will remain $n=3 k-1=3(k-1)+2$ stones, and the opponent becomes the current player. By the induction hypothesis, the opponent wins.

No matter what the current player does, their opponent wins. So the next player wins.
(2) $n+1=3 k+2$. Then the current player can remove one stone from the pile to get a pile with $3 k+1$ stones, and the opponent becomes the current player. By the induction hypothesis, the opponent's next player (who is the current player) wins.
(3) $n+1=3 k+3$. Then the current player can remove two stones from the pile to get a pile with $3 k+1$ stones. By the previous case, the current player wins.
In each case, the claim holds, so it holds in general.
By the principle of mathematical induction, we have proved our conjecture.

4 Make It Stronger

(a) We attempt a proof by induction.

Base case. For $n=1, a_{1}=1 \leq 9=3^{\left(2^{1}\right)}$.

Induction case.

Induction hypothesis. For some $n \geq 1$, suppose that $a_{n} \leq 3^{\left(2^{n}\right)}$.
Induction step. Consider a_{n+1}.

$$
\begin{aligned}
a_{n+1} & =3 a_{n}^{2} \\
& \leq 3\left(3^{\left(2^{n}\right)}\right)^{2} \\
& =3\left(3^{\left(2 \cdot 2^{n}\right)}\right) \\
& =3\left(3^{\left(2^{n+1}\right)}\right) \\
& =3^{\left(2^{n+1}+1\right)} \\
& \not \leq 3^{\left(2^{n+1}\right)} .
\end{aligned}
$$

(b) By induction.

Base case. For $n=1, a_{1}=1 \leq 9=3^{\left(2^{1}\right)}$.
Induction case.

Induction hypothesis. For some $n \geq 1$, suppose that $a_{n} \leq 3^{\left(2^{n}-1\right)}$.
Induction step. Consider a_{n+1}.

$$
\begin{aligned}
a_{n+1} & =3 a_{n}^{2} \\
& \leq 3\left(3^{\left(2^{n}-1\right)}\right)^{2} \\
& =3\left(3^{\left(2 \cdot 2^{n}-2\right)}\right) \\
& =3\left(3^{\left(2^{n+1}-2\right)}\right) \\
& =3^{\left(2^{n+1}-1\right)} .
\end{aligned}
$$

By the principle of mathematical induction, we have shown that for every natural number $n \geq 1, a_{n} \leq 3^{\left(2^{n}-1\right)}$.
(c) For every $n \geq 1$, we have $2^{n}-1 \leq 2^{n}$ and so $3^{\left(2^{n}-1\right)} \leq 3^{\left(2^{n}\right)}$.

By part (b), $a_{n} \leq 3^{\left(2^{n}-1\right)} \leq 3^{\left(2^{n}\right)}$, which is the claim we wanted to show in (a).

